Summary: | While reduced graphene oxide (rGO) is used widely as a catalyst, its catalytic activity can be improved significantly by modifying it with a metal. In this study, we compared the photocatalytic and catalytic properties of base-treated rGO particles and transition-metal-ion-doped rGO based on the oxidation reaction of thiophenol and the photocatalytic degradation of 4-chlorophenol. Since the two catalytic activities are related to the changes in the electronic structure of rGO, X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and Raman spectroscopy were performed. When rGO was doped with Mn<sup>2+</sup> ions, its catalytic properties improved with respect to both reactions. The changes in the electronic structure of rGO are attributed to the formation of defect structures on the rGO surface via a reaction between the doped Mn<sup>2+</sup> ions and oxygen of the rGO surface. Thus, the results show that the doping of rGO with Mn ions in the +2-charge state (stable oxide form: MnO) enhances its catalytic and photocatalytic activities. Hence, this study provides new insights into the use of defect-controlled rGO as a novel catalyst.
|