Pedestrian Validation in Infrared Images by Means of Active Contours and Neural Networks
<p/> <p>This paper presents two different modules for the validation of human shape presence in far-infrared images. These modules are part of a more complex system aimed at the detection of pedestrians by means of the simultaneous use of two stereo vision systems in both far-infrared an...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://asp.eurasipjournals.com/content/2010/752567 |
Summary: | <p/> <p>This paper presents two different modules for the validation of human shape presence in far-infrared images. These modules are part of a more complex system aimed at the detection of pedestrians by means of the simultaneous use of two stereo vision systems in both far-infrared and daylight domains. The first module detects the presence of a human shape in a list of areas of attention using active contours to detect the object shape and evaluating the results by means of a neural network. The second validation subsystem directly exploits a neural network for each area of attention in the far-infrared images and produces a list of votes.</p> |
---|---|
ISSN: | 1687-6172 1687-6180 |