Counting Tensor Rank Decompositions

Tensor rank decomposition is a useful tool for geometric interpretation of the tensors in the canonical tensor model (CTM) of quantum gravity. In order to understand the stability of this interpretation, it is important to be able to estimate how many tensor rank decompositions can approximate a giv...

Full description

Bibliographic Details
Main Authors: Dennis Obster, Naoki Sasakura
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/8/302
id doaj-8018ac1cd9704533b682d09cbaad43a8
record_format Article
spelling doaj-8018ac1cd9704533b682d09cbaad43a82021-08-26T14:25:24ZengMDPI AGUniverse2218-19972021-08-01730230210.3390/universe7080302Counting Tensor Rank DecompositionsDennis Obster0Naoki Sasakura1Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, JapanYukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, JapanTensor rank decomposition is a useful tool for geometric interpretation of the tensors in the canonical tensor model (CTM) of quantum gravity. In order to understand the stability of this interpretation, it is important to be able to estimate how many tensor rank decompositions can approximate a given tensor. More precisely, finding an approximate symmetric tensor rank decomposition of a symmetric tensor <i>Q</i> with an error allowance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Δ</mi></semantics></math></inline-formula> is to find vectors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ϕ</mi><mi>i</mi></msup></semantics></math></inline-formula> satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>∥</mo><mi>Q</mi><mo>−</mo></mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>R</mi></msubsup><msup><mi>ϕ</mi><mi>i</mi></msup><mo>⊗</mo><msup><mi>ϕ</mi><mi>i</mi></msup><mo>⋯</mo><mo>⊗</mo><msup><mi>ϕ</mi><mi>i</mi></msup><msup><mrow><mo>∥</mo></mrow><mn>2</mn></msup><mo>≤</mo><mi mathvariant="sans-serif">Δ</mi></mrow></semantics></math></inline-formula>. The volume of all such possible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ϕ</mi><mi>i</mi></msup></semantics></math></inline-formula> is an interesting quantity which measures the amount of possible decompositions for a tensor <i>Q</i> within an allowance. While it would be difficult to evaluate this quantity for each <i>Q</i>, we find an explicit formula for a similar quantity by integrating over all <i>Q</i> of unit norm. The expression as a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Δ</mi></semantics></math></inline-formula> is given by the product of a hypergeometric function and a power function. By combining new numerical analysis and previous results, we conjecture a formula for the critical rank, yielding an estimate for the spacetime degrees of freedom of the CTM. We also extend the formula to generic decompositions of non-symmetric tensors in order to make our results more broadly applicable. Interestingly, the derivation depends on the existence (convergence) of the partition function of a matrix model which previously appeared in the context of the CTM.https://www.mdpi.com/2218-1997/7/8/302canonical tensor modeltensor rank decompositionquantum gravitynumerical methods
collection DOAJ
language English
format Article
sources DOAJ
author Dennis Obster
Naoki Sasakura
spellingShingle Dennis Obster
Naoki Sasakura
Counting Tensor Rank Decompositions
Universe
canonical tensor model
tensor rank decomposition
quantum gravity
numerical methods
author_facet Dennis Obster
Naoki Sasakura
author_sort Dennis Obster
title Counting Tensor Rank Decompositions
title_short Counting Tensor Rank Decompositions
title_full Counting Tensor Rank Decompositions
title_fullStr Counting Tensor Rank Decompositions
title_full_unstemmed Counting Tensor Rank Decompositions
title_sort counting tensor rank decompositions
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2021-08-01
description Tensor rank decomposition is a useful tool for geometric interpretation of the tensors in the canonical tensor model (CTM) of quantum gravity. In order to understand the stability of this interpretation, it is important to be able to estimate how many tensor rank decompositions can approximate a given tensor. More precisely, finding an approximate symmetric tensor rank decomposition of a symmetric tensor <i>Q</i> with an error allowance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Δ</mi></semantics></math></inline-formula> is to find vectors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ϕ</mi><mi>i</mi></msup></semantics></math></inline-formula> satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>∥</mo><mi>Q</mi><mo>−</mo></mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>R</mi></msubsup><msup><mi>ϕ</mi><mi>i</mi></msup><mo>⊗</mo><msup><mi>ϕ</mi><mi>i</mi></msup><mo>⋯</mo><mo>⊗</mo><msup><mi>ϕ</mi><mi>i</mi></msup><msup><mrow><mo>∥</mo></mrow><mn>2</mn></msup><mo>≤</mo><mi mathvariant="sans-serif">Δ</mi></mrow></semantics></math></inline-formula>. The volume of all such possible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ϕ</mi><mi>i</mi></msup></semantics></math></inline-formula> is an interesting quantity which measures the amount of possible decompositions for a tensor <i>Q</i> within an allowance. While it would be difficult to evaluate this quantity for each <i>Q</i>, we find an explicit formula for a similar quantity by integrating over all <i>Q</i> of unit norm. The expression as a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Δ</mi></semantics></math></inline-formula> is given by the product of a hypergeometric function and a power function. By combining new numerical analysis and previous results, we conjecture a formula for the critical rank, yielding an estimate for the spacetime degrees of freedom of the CTM. We also extend the formula to generic decompositions of non-symmetric tensors in order to make our results more broadly applicable. Interestingly, the derivation depends on the existence (convergence) of the partition function of a matrix model which previously appeared in the context of the CTM.
topic canonical tensor model
tensor rank decomposition
quantum gravity
numerical methods
url https://www.mdpi.com/2218-1997/7/8/302
work_keys_str_mv AT dennisobster countingtensorrankdecompositions
AT naokisasakura countingtensorrankdecompositions
_version_ 1721189604589043712