Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
Sasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris G...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf |
id |
doaj-80106645b8074b889ac9882c3c087877 |
---|---|
record_format |
Article |
spelling |
doaj-80106645b8074b889ac9882c3c0878772021-03-02T10:20:59ZengEDP SciencesMATEC Web of Conferences2261-236X2019-01-012800502310.1051/matecconf/201928005023matecconf_icsbe2019_05023Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)Alkaff Muhammad0Khatimi Husnul1Lathifah Nur2Sari Yuslena3Information Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversitySasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris Gagatas, Gigi Haruan, Kulat Kurikit, and Hiris Pudak. We used primary data of Sasirangan images collected from Kampung Sasirangan, Banjarmasin, South Kalimantan. After that, the images are processed using Scale-Invariant Feature Transform (SIFT) to extract its features. Furthermore, the extracted features vectors obtained is classified using the Support Vector Machine (SVM). The result shows that the Scale- Invariant Feature Transform (SIFT) feature extraction with Support Vector Machine (SVM) classification able to classify Sasirangan motifs with an overall accuracy of 95%.https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alkaff Muhammad Khatimi Husnul Lathifah Nur Sari Yuslena |
spellingShingle |
Alkaff Muhammad Khatimi Husnul Lathifah Nur Sari Yuslena Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) MATEC Web of Conferences |
author_facet |
Alkaff Muhammad Khatimi Husnul Lathifah Nur Sari Yuslena |
author_sort |
Alkaff Muhammad |
title |
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) |
title_short |
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) |
title_full |
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) |
title_fullStr |
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) |
title_full_unstemmed |
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) |
title_sort |
sasirangan motifs classification using scale- invariant feature transform (sift) and support vector machine (svm) |
publisher |
EDP Sciences |
series |
MATEC Web of Conferences |
issn |
2261-236X |
publishDate |
2019-01-01 |
description |
Sasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris Gagatas, Gigi Haruan, Kulat Kurikit, and Hiris Pudak. We used primary data of Sasirangan images collected from Kampung Sasirangan, Banjarmasin, South Kalimantan. After that, the images are processed using Scale-Invariant Feature Transform (SIFT) to extract its features. Furthermore, the extracted features vectors obtained is classified using the Support Vector Machine (SVM). The result shows that the Scale- Invariant Feature Transform (SIFT) feature extraction with Support Vector Machine (SVM) classification able to classify Sasirangan motifs with an overall accuracy of 95%. |
url |
https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf |
work_keys_str_mv |
AT alkaffmuhammad sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm AT khatimihusnul sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm AT lathifahnur sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm AT sariyuslena sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm |
_version_ |
1724237068512526336 |