Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)

Sasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris G...

Full description

Bibliographic Details
Main Authors: Alkaff Muhammad, Khatimi Husnul, Lathifah Nur, Sari Yuslena
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf
id doaj-80106645b8074b889ac9882c3c087877
record_format Article
spelling doaj-80106645b8074b889ac9882c3c0878772021-03-02T10:20:59ZengEDP SciencesMATEC Web of Conferences2261-236X2019-01-012800502310.1051/matecconf/201928005023matecconf_icsbe2019_05023Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)Alkaff Muhammad0Khatimi Husnul1Lathifah Nur2Sari Yuslena3Information Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversityInformation Technology, Faculty of Engineering, Lambung Mangkurat UniversitySasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris Gagatas, Gigi Haruan, Kulat Kurikit, and Hiris Pudak. We used primary data of Sasirangan images collected from Kampung Sasirangan, Banjarmasin, South Kalimantan. After that, the images are processed using Scale-Invariant Feature Transform (SIFT) to extract its features. Furthermore, the extracted features vectors obtained is classified using the Support Vector Machine (SVM). The result shows that the Scale- Invariant Feature Transform (SIFT) feature extraction with Support Vector Machine (SVM) classification able to classify Sasirangan motifs with an overall accuracy of 95%.https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Alkaff Muhammad
Khatimi Husnul
Lathifah Nur
Sari Yuslena
spellingShingle Alkaff Muhammad
Khatimi Husnul
Lathifah Nur
Sari Yuslena
Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
MATEC Web of Conferences
author_facet Alkaff Muhammad
Khatimi Husnul
Lathifah Nur
Sari Yuslena
author_sort Alkaff Muhammad
title Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
title_short Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
title_full Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
title_fullStr Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
title_full_unstemmed Sasirangan Motifs Classification using Scale- Invariant Feature Transform (SIFT) and Support Vector Machine (SVM)
title_sort sasirangan motifs classification using scale- invariant feature transform (sift) and support vector machine (svm)
publisher EDP Sciences
series MATEC Web of Conferences
issn 2261-236X
publishDate 2019-01-01
description Sasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris Gagatas, Gigi Haruan, Kulat Kurikit, and Hiris Pudak. We used primary data of Sasirangan images collected from Kampung Sasirangan, Banjarmasin, South Kalimantan. After that, the images are processed using Scale-Invariant Feature Transform (SIFT) to extract its features. Furthermore, the extracted features vectors obtained is classified using the Support Vector Machine (SVM). The result shows that the Scale- Invariant Feature Transform (SIFT) feature extraction with Support Vector Machine (SVM) classification able to classify Sasirangan motifs with an overall accuracy of 95%.
url https://www.matec-conferences.org/articles/matecconf/pdf/2019/29/matecconf_icsbe2019_05023.pdf
work_keys_str_mv AT alkaffmuhammad sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm
AT khatimihusnul sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm
AT lathifahnur sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm
AT sariyuslena sasiranganmotifsclassificationusingscaleinvariantfeaturetransformsiftandsupportvectormachinesvm
_version_ 1724237068512526336