Summary: | Sasirangan is one of the traditional cloth from Indonesia. Specifically, it comes from South Borneo. It has many variations of motifs with a different meaning for each pattern. This paper proposes a prototype of Sasirangan motifs classification using four (4) type of Sasirangan motifs namely Hiris Gagatas, Gigi Haruan, Kulat Kurikit, and Hiris Pudak. We used primary data of Sasirangan images collected from Kampung Sasirangan, Banjarmasin, South Kalimantan. After that, the images are processed using Scale-Invariant Feature Transform (SIFT) to extract its features. Furthermore, the extracted features vectors obtained is classified using the Support Vector Machine (SVM). The result shows that the Scale- Invariant Feature Transform (SIFT) feature extraction with Support Vector Machine (SVM) classification able to classify Sasirangan motifs with an overall accuracy of 95%.
|