Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays
In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/15/5032 |
id |
doaj-8008ef858afc444b83ae1a605b24a302 |
---|---|
record_format |
Article |
spelling |
doaj-8008ef858afc444b83ae1a605b24a3022021-08-06T15:31:14ZengMDPI AGSensors1424-82202021-07-01215032503210.3390/s21155032Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric ArraysAlec Ikei0James Wissman1Kaushik Sampath2Gregory Yesner3Syed N. Qadri4Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USANaval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USANaval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USANaval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USANaval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USAIn the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>33</mn></msub></semantics></math></inline-formula> performance of up to 18 pC N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.https://www.mdpi.com/1424-8220/21/15/5032PVDFPVDF-TrFE3D printingsmart materialssensors |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alec Ikei James Wissman Kaushik Sampath Gregory Yesner Syed N. Qadri |
spellingShingle |
Alec Ikei James Wissman Kaushik Sampath Gregory Yesner Syed N. Qadri Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays Sensors PVDF PVDF-TrFE 3D printing smart materials sensors |
author_facet |
Alec Ikei James Wissman Kaushik Sampath Gregory Yesner Syed N. Qadri |
author_sort |
Alec Ikei |
title |
Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays |
title_short |
Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays |
title_full |
Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays |
title_fullStr |
Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays |
title_full_unstemmed |
Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays |
title_sort |
tunable in situ 3d-printed pvdf-trfe piezoelectric arrays |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-07-01 |
description |
In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>33</mn></msub></semantics></math></inline-formula> performance of up to 18 pC N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process. |
topic |
PVDF PVDF-TrFE 3D printing smart materials sensors |
url |
https://www.mdpi.com/1424-8220/21/15/5032 |
work_keys_str_mv |
AT alecikei tunableinsitu3dprintedpvdftrfepiezoelectricarrays AT jameswissman tunableinsitu3dprintedpvdftrfepiezoelectricarrays AT kaushiksampath tunableinsitu3dprintedpvdftrfepiezoelectricarrays AT gregoryyesner tunableinsitu3dprintedpvdftrfepiezoelectricarrays AT syednqadri tunableinsitu3dprintedpvdftrfepiezoelectricarrays |
_version_ |
1721217601119453184 |