Heat-Dissipation Performance of Nanocomposite Phase-Change Materials in a Twin-Heat-Source System

In this paper, pure paraffin was mixed with CuO (high thermal conductivity) and Span-80 (as a dispersant). The CuO/paraffin nanocomposite phase-change materials (PCMs) were synthesized with mass fractions of 0.3%, 0.6%, and 1.2%, by a two-step method. Heat-transfer characteristics of the heat-pipe–P...

Full description

Bibliographic Details
Main Authors: Yanxin Li, Jin Wang, Li Yang, Bengt Sundén
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/5/4/174
Description
Summary:In this paper, pure paraffin was mixed with CuO (high thermal conductivity) and Span-80 (as a dispersant). The CuO/paraffin nanocomposite phase-change materials (PCMs) were synthesized with mass fractions of 0.3%, 0.6%, and 1.2%, by a two-step method. Heat-transfer characteristics of the heat-pipe–PCMs module and effects of fan power and heating power on the performance of the cooling module in a twin-heat-source system were studied. For two heat sources under 10 W–10 W (heat source 1 with a power of 10 W and heat source 2 with a power of 10 W), the paraffin wax decreases the evaporator temperature by 14.4%, compared with cases without PCMs.
ISSN:2311-5521