Remarks on Regularized Stokeslets in Slender Body Theory

We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi&...

Full description

Bibliographic Details
Main Author: Laurel Ohm
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/8/283
id doaj-7fdd089589b744afa67585f5fde33d7f
record_format Article
spelling doaj-7fdd089589b744afa67585f5fde33d7f2021-08-26T13:44:40ZengMDPI AGFluids2311-55212021-08-01628328310.3390/fluids6080283Remarks on Regularized Stokeslets in Slender Body TheoryLaurel Ohm0Courant Institute of Mathematical Sciences, New York, NY 10012, USAWe remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Denoting the regularization parameter by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula> bounds for the difference between regularized SBT and its classical counterpart in terms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mi>δ</mi><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow></semantics></math></inline-formula>; in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>=</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> is necessary to avoid an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>/</mo><msup><mi>ϵ</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and any choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∝</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> will result in an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed <i>slender body PDE</i> which classical SBT is known to approximate. Numerics verify this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy but also indicate that the difference may have little impact in practice.https://www.mdpi.com/2311-5521/6/8/283slender body theoryregularized Stokesletserror analysis
collection DOAJ
language English
format Article
sources DOAJ
author Laurel Ohm
spellingShingle Laurel Ohm
Remarks on Regularized Stokeslets in Slender Body Theory
Fluids
slender body theory
regularized Stokeslets
error analysis
author_facet Laurel Ohm
author_sort Laurel Ohm
title Remarks on Regularized Stokeslets in Slender Body Theory
title_short Remarks on Regularized Stokeslets in Slender Body Theory
title_full Remarks on Regularized Stokeslets in Slender Body Theory
title_fullStr Remarks on Regularized Stokeslets in Slender Body Theory
title_full_unstemmed Remarks on Regularized Stokeslets in Slender Body Theory
title_sort remarks on regularized stokeslets in slender body theory
publisher MDPI AG
series Fluids
issn 2311-5521
publishDate 2021-08-01
description We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Denoting the regularization parameter by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula> bounds for the difference between regularized SBT and its classical counterpart in terms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mi>δ</mi><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow></semantics></math></inline-formula>; in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>=</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> is necessary to avoid an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>/</mo><msup><mi>ϵ</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and any choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∝</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> will result in an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed <i>slender body PDE</i> which classical SBT is known to approximate. Numerics verify this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy but also indicate that the difference may have little impact in practice.
topic slender body theory
regularized Stokeslets
error analysis
url https://www.mdpi.com/2311-5521/6/8/283
work_keys_str_mv AT laurelohm remarksonregularizedstokesletsinslenderbodytheory
_version_ 1721193495058710528