Remarks on Regularized Stokeslets in Slender Body Theory
We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi&...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Fluids |
Subjects: | |
Online Access: | https://www.mdpi.com/2311-5521/6/8/283 |
id |
doaj-7fdd089589b744afa67585f5fde33d7f |
---|---|
record_format |
Article |
spelling |
doaj-7fdd089589b744afa67585f5fde33d7f2021-08-26T13:44:40ZengMDPI AGFluids2311-55212021-08-01628328310.3390/fluids6080283Remarks on Regularized Stokeslets in Slender Body TheoryLaurel Ohm0Courant Institute of Mathematical Sciences, New York, NY 10012, USAWe remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Denoting the regularization parameter by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula> bounds for the difference between regularized SBT and its classical counterpart in terms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mi>δ</mi><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow></semantics></math></inline-formula>; in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>=</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> is necessary to avoid an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>/</mo><msup><mi>ϵ</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and any choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∝</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> will result in an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed <i>slender body PDE</i> which classical SBT is known to approximate. Numerics verify this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy but also indicate that the difference may have little impact in practice.https://www.mdpi.com/2311-5521/6/8/283slender body theoryregularized Stokesletserror analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Laurel Ohm |
spellingShingle |
Laurel Ohm Remarks on Regularized Stokeslets in Slender Body Theory Fluids slender body theory regularized Stokeslets error analysis |
author_facet |
Laurel Ohm |
author_sort |
Laurel Ohm |
title |
Remarks on Regularized Stokeslets in Slender Body Theory |
title_short |
Remarks on Regularized Stokeslets in Slender Body Theory |
title_full |
Remarks on Regularized Stokeslets in Slender Body Theory |
title_fullStr |
Remarks on Regularized Stokeslets in Slender Body Theory |
title_full_unstemmed |
Remarks on Regularized Stokeslets in Slender Body Theory |
title_sort |
remarks on regularized stokeslets in slender body theory |
publisher |
MDPI AG |
series |
Fluids |
issn |
2311-5521 |
publishDate |
2021-08-01 |
description |
We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Denoting the regularization parameter by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula> bounds for the difference between regularized SBT and its classical counterpart in terms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mi>δ</mi><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow></semantics></math></inline-formula>; in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>=</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> is necessary to avoid an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>/</mo><msup><mi>ϵ</mi><mn>2</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, and any choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∝</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula> will result in an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed <i>slender body PDE</i> which classical SBT is known to approximate. Numerics verify this <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> discrepancy but also indicate that the difference may have little impact in practice. |
topic |
slender body theory regularized Stokeslets error analysis |
url |
https://www.mdpi.com/2311-5521/6/8/283 |
work_keys_str_mv |
AT laurelohm remarksonregularizedstokesletsinslenderbodytheory |
_version_ |
1721193495058710528 |