Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course
Research shows that traditional teacher-and-content-centered education doesn’t give students good preparation in critical and creative thinking. This article presents a qualitative study of student performances in two original learning tasks, one related to critical thinking and the other related to...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hong Kong Bao Long Accounting & Secretarial Limited
2021-03-01
|
Series: | Knowledge Management & E-Learning: An International Journal |
Subjects: | |
Online Access: | http://www.kmel-journal.org/ojs/index.php/online-publication/article/view/466 |
id |
doaj-7fd770438a6f4b6b8477f8ec69475677 |
---|---|
record_format |
Article |
spelling |
doaj-7fd770438a6f4b6b8477f8ec694756772021-04-27T08:50:57ZengHong Kong Bao Long Accounting & Secretarial LimitedKnowledge Management & E-Learning: An International Journal2073-79042073-79042021-03-01131588210.34105/j.kmel.2021.13.004Facebook-supported tasks for exploring critical and creative thinking in a physics teaching courseJosip Slisko0https://orcid.org/0000-0002-5805-4808Benemérita Universidad Autónoma de Puebla, Puebla, MexicoResearch shows that traditional teacher-and-content-centered education doesn’t give students good preparation in critical and creative thinking. This article presents a qualitative study of student performances in two original learning tasks, one related to critical thinking and the other related to creative thinking. The study was carried out in an obligatory physics teaching course for undergraduate students. The first learning task focused on critical thinking, in which students were asked to evaluate various defects in an artificially contextualized electrostatic exercise. Students’ performances, collected via Google Classroom, show that they were able to detect and justify its contextual defects using real-world knowledge. A big challenge to students was to provide quantitative arguments against noticed huge electric charge allegedly created in described electrostatic cling. The second learning task focused on creative thinking, in which students engaged in a multi-step learning sequence to elaborate one explanation and two predictions related to enigmatic behavior of a tomato. A secret and closed Facebook group was administered to present the subtasks in the sequence and receive students’ answers in real time. The results show that students performed better in the subtasks that called for a near knowledge transfer than in other ones calling for a far knowledge transfer. In their reflective comments about the sequence, students recognized the importance of “thinking out of the box” for deeper learning of physics. Based on the results, suggestions on the design of critical and creative thinking related tasks are discussed for future implementation.http://www.kmel-journal.org/ojs/index.php/online-publication/article/view/466critical thinkingcreative thinkinginteractive science learning environmentself-regulated learningonline learningknowledge inertiamagic-based physics learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Josip Slisko |
spellingShingle |
Josip Slisko Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course Knowledge Management & E-Learning: An International Journal critical thinking creative thinking interactive science learning environment self-regulated learning online learning knowledge inertia magic-based physics learning |
author_facet |
Josip Slisko |
author_sort |
Josip Slisko |
title |
Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
title_short |
Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
title_full |
Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
title_fullStr |
Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
title_full_unstemmed |
Facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
title_sort |
facebook-supported tasks for exploring critical and creative thinking in a physics teaching course |
publisher |
Hong Kong Bao Long Accounting & Secretarial Limited |
series |
Knowledge Management & E-Learning: An International Journal |
issn |
2073-7904 2073-7904 |
publishDate |
2021-03-01 |
description |
Research shows that traditional teacher-and-content-centered education doesn’t give students good preparation in critical and creative thinking. This article presents a qualitative study of student performances in two original learning tasks, one related to critical thinking and the other related to creative thinking. The study was carried out in an obligatory physics teaching course for undergraduate students. The first learning task focused on critical thinking, in which students were asked to evaluate various defects in an artificially contextualized electrostatic exercise. Students’ performances, collected via Google Classroom, show that they were able to detect and justify its contextual defects using real-world knowledge. A big challenge to students was to provide quantitative arguments against noticed huge electric charge allegedly created in described electrostatic cling. The second learning task focused on creative thinking, in which students engaged in a multi-step learning sequence to elaborate one explanation and two predictions related to enigmatic behavior of a tomato. A secret and closed Facebook group was administered to present the subtasks in the sequence and receive students’ answers in real time. The results show that students performed better in the subtasks that called for a near knowledge transfer than in other ones calling for a far knowledge transfer. In their reflective comments about the sequence, students recognized the importance of “thinking out of the box” for deeper learning of physics. Based on the results, suggestions on the design of critical and creative thinking related tasks are discussed for future implementation. |
topic |
critical thinking creative thinking interactive science learning environment self-regulated learning online learning knowledge inertia magic-based physics learning |
url |
http://www.kmel-journal.org/ojs/index.php/online-publication/article/view/466 |
work_keys_str_mv |
AT josipslisko facebooksupportedtasksforexploringcriticalandcreativethinkinginaphysicsteachingcourse |
_version_ |
1721506019244244992 |