Activation and alliance of regulatory pathways in C. albicans during mammalian infection.
Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infectio...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-02-01
|
Series: | PLoS Biology |
Online Access: | http://europepmc.org/articles/PMC4333574?pdf=render |
id |
doaj-7fc2868382294bb398643ce23f7a6059 |
---|---|
record_format |
Article |
spelling |
doaj-7fc2868382294bb398643ce23f7a60592021-07-02T08:22:26ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852015-02-01132e100207610.1371/journal.pbio.1002076Activation and alliance of regulatory pathways in C. albicans during mammalian infection.Wenjie XuNorma V SolisRachel L EhrlichCarol A WoolfordScott G FillerAaron P MitchellGene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host-pathogen interaction occurs.http://europepmc.org/articles/PMC4333574?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wenjie Xu Norma V Solis Rachel L Ehrlich Carol A Woolford Scott G Filler Aaron P Mitchell |
spellingShingle |
Wenjie Xu Norma V Solis Rachel L Ehrlich Carol A Woolford Scott G Filler Aaron P Mitchell Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biology |
author_facet |
Wenjie Xu Norma V Solis Rachel L Ehrlich Carol A Woolford Scott G Filler Aaron P Mitchell |
author_sort |
Wenjie Xu |
title |
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. |
title_short |
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. |
title_full |
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. |
title_fullStr |
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. |
title_full_unstemmed |
Activation and alliance of regulatory pathways in C. albicans during mammalian infection. |
title_sort |
activation and alliance of regulatory pathways in c. albicans during mammalian infection. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Biology |
issn |
1544-9173 1545-7885 |
publishDate |
2015-02-01 |
description |
Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host-pathogen interaction occurs. |
url |
http://europepmc.org/articles/PMC4333574?pdf=render |
work_keys_str_mv |
AT wenjiexu activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection AT normavsolis activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection AT rachellehrlich activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection AT carolawoolford activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection AT scottgfiller activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection AT aaronpmitchell activationandallianceofregulatorypathwaysincalbicansduringmammalianinfection |
_version_ |
1721334864519626752 |