Summary: | The estimation of soil wet bulk density (<i>ρ</i><sub>n</sub>) and dry bulk density (<i>ρ</i><sub>b</sub>) using the novel digital electromechanical system (DES) has provided information about important parameters for the assessment of soil quality and health with a direct application for agronomists. The evaluation of the DES performance is particularly appropriate for different tillage methods, mulching systems, and fertilizers used to increase soil fertility and productivity, but currently, there is a lack of information, particularly in the arid areas in underdeveloped countries. Therefore, the main aim of this study was the application of a novel digital electromechanical system (DES) to evaluate bulk density, wet (<i>ρ</i><sub>n</sub>) and dry (<i>ρ</i><sub>b</sub>), under different soil treatments according to the variations in thermal efficiencies (η<sub>th</sub>), microwave penetration depths (M<sub>DP</sub>), and specific energy consumption (Q<sub>con</sub>) in an experimental area close to Baghdad (Iraq). The experimental design consisted of 72 plots, each 4 m<sup>2</sup>. The agronomic practices included two different tillage systems (disc plough followed by a spring disk and mouldboard plough followed by a spring disk) and twelve treatments involving mulching plastic sheeting combined with fertilizers, to determine their effect on the measured soil <i>ρ</i><sub>n</sub> and <i>ρ</i><sub>b</sub> and the DES performance in different soils. The results indicated that soil <i>ρ</i><sub>n</sub><i> </i>and<i> ρ</i><sub>b</sub> varied significantly with both the tillage systems and the mulching systems. As expected, the soil <i>ρn</i> and <i>ρb</i>, M<sub>DP</sub>, and Q<sub>con</sub> increased with an increase in the soil depth. Moreover, the tillage, soil mulching, and soil depth value significantly affected η<sub>th</sub> and Q<sub>con</sub>. A strong relationship was identified between the soil tillage and M<sub>DP</sub> for different soil treatments, leading to the changes in soil <i>ρ</i><sub>b</sub> and the soil dielectric constant (ε').
|