Multi-omics landscape of circadian rhythm pathway alterations in Glioma
Circadian rhythm pathway was demonstrated pathological functions in glioma on single-gene level. We aim to depict the multi-omics landscape of circadian rhythm pathway alteration in glioma using bioinformatic analyses. Multi-omics data were obtained from “cBioPortal” database. Comparisons were done...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-01-01
|
Series: | Bioengineered |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/21655979.2021.1947075 |
id |
doaj-7fab7a590afa469fabeb3316a50b7821 |
---|---|
record_format |
Article |
spelling |
doaj-7fab7a590afa469fabeb3316a50b78212021-07-06T12:16:11ZengTaylor & Francis GroupBioengineered2165-59792165-59872021-01-011213294330810.1080/21655979.2021.19470751947075Multi-omics landscape of circadian rhythm pathway alterations in GliomaChang Zhang0Jiahui Xu1Lijun Chen2Xiaojie Lin3Guang Dong Second Hospital of Traditional Chinese MedicineGuang Dong Second Hospital of Traditional Chinese MedicineThe Fifth Clinical College of Guangzhou University of Chinese MedicineGuang Dong Second Hospital of Traditional Chinese MedicineCircadian rhythm pathway was demonstrated pathological functions in glioma on single-gene level. We aim to depict the multi-omics landscape of circadian rhythm pathway alteration in glioma using bioinformatic analyses. Multi-omics data were obtained from “cBioPortal” database. Comparisons were done regarding clinical parameters, differential-expressed genes and functional annotations. A pathway index was generated using the expression data from TCGA and GTEx to quantify the general alteration level of the pathway with clinical association of circadian rhythm pathway index explored. A total of 30 genes were mapped on the circadian rhythm pathway. Genomic profile ofcircadian rhythm pathway genes exhibited distinct characteristics on multiple levels between lower grade glioma (LGG) and glioblastoma multiforme (GBM) patients. LGG patients presented significantly higher frequencies of multi-omics mutations, as well as significant clinical relevance, on single-gene level. Differential-expressed genes between LGG and GBM patients revealed different functions between subtypes that related to the alteration of circadian rhythm pathway. LGG have significantly higher pathway index than normal brain tissue, while GBM significantly lower than normal tissue (P < 0.01), indicating distinctly altered circadian pathway in LGG. Circadian rhythm pathway index correlated with the prognosis of LGG, but not GBM, patients, with higher score indicating better survival outcome (LGG: HR = 0.39, 95% CI: 0.26 − 0.59, P < 0.001). In conclusion, LGG have more multi-omics alterations of circadian rhythm pathway than GBM. Quantification of circadian rhythm pathway using pathway index demonstrated hyperactivated pathway status in LGG and correlated with the prognosis of LGG patients.http://dx.doi.org/10.1080/21655979.2021.1947075circadian rhythmprognostic biomarkermulti-omicsbioinformatic analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chang Zhang Jiahui Xu Lijun Chen Xiaojie Lin |
spellingShingle |
Chang Zhang Jiahui Xu Lijun Chen Xiaojie Lin Multi-omics landscape of circadian rhythm pathway alterations in Glioma Bioengineered circadian rhythm prognostic biomarker multi-omics bioinformatic analysis |
author_facet |
Chang Zhang Jiahui Xu Lijun Chen Xiaojie Lin |
author_sort |
Chang Zhang |
title |
Multi-omics landscape of circadian rhythm pathway alterations in Glioma |
title_short |
Multi-omics landscape of circadian rhythm pathway alterations in Glioma |
title_full |
Multi-omics landscape of circadian rhythm pathway alterations in Glioma |
title_fullStr |
Multi-omics landscape of circadian rhythm pathway alterations in Glioma |
title_full_unstemmed |
Multi-omics landscape of circadian rhythm pathway alterations in Glioma |
title_sort |
multi-omics landscape of circadian rhythm pathway alterations in glioma |
publisher |
Taylor & Francis Group |
series |
Bioengineered |
issn |
2165-5979 2165-5987 |
publishDate |
2021-01-01 |
description |
Circadian rhythm pathway was demonstrated pathological functions in glioma on single-gene level. We aim to depict the multi-omics landscape of circadian rhythm pathway alteration in glioma using bioinformatic analyses. Multi-omics data were obtained from “cBioPortal” database. Comparisons were done regarding clinical parameters, differential-expressed genes and functional annotations. A pathway index was generated using the expression data from TCGA and GTEx to quantify the general alteration level of the pathway with clinical association of circadian rhythm pathway index explored. A total of 30 genes were mapped on the circadian rhythm pathway. Genomic profile ofcircadian rhythm pathway genes exhibited distinct characteristics on multiple levels between lower grade glioma (LGG) and glioblastoma multiforme (GBM) patients. LGG patients presented significantly higher frequencies of multi-omics mutations, as well as significant clinical relevance, on single-gene level. Differential-expressed genes between LGG and GBM patients revealed different functions between subtypes that related to the alteration of circadian rhythm pathway. LGG have significantly higher pathway index than normal brain tissue, while GBM significantly lower than normal tissue (P < 0.01), indicating distinctly altered circadian pathway in LGG. Circadian rhythm pathway index correlated with the prognosis of LGG, but not GBM, patients, with higher score indicating better survival outcome (LGG: HR = 0.39, 95% CI: 0.26 − 0.59, P < 0.001). In conclusion, LGG have more multi-omics alterations of circadian rhythm pathway than GBM. Quantification of circadian rhythm pathway using pathway index demonstrated hyperactivated pathway status in LGG and correlated with the prognosis of LGG patients. |
topic |
circadian rhythm prognostic biomarker multi-omics bioinformatic analysis |
url |
http://dx.doi.org/10.1080/21655979.2021.1947075 |
work_keys_str_mv |
AT changzhang multiomicslandscapeofcircadianrhythmpathwayalterationsinglioma AT jiahuixu multiomicslandscapeofcircadianrhythmpathwayalterationsinglioma AT lijunchen multiomicslandscapeofcircadianrhythmpathwayalterationsinglioma AT xiaojielin multiomicslandscapeofcircadianrhythmpathwayalterationsinglioma |
_version_ |
1721317437347987456 |