Anodisation Increases Integration of Unloaded Titanium Implants in Sheep Mandible

Spark discharge anodic oxidation forms porous TiO2 films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into heal...

Full description

Bibliographic Details
Main Authors: Warwick J. Duncan, Min-Ho Lee, Tae-Sung Bae, Sook-Jeong Lee, Jennifer Gay, Carolina Loch
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2015/857969
Description
Summary:Spark discharge anodic oxidation forms porous TiO2 films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into healed mandibular postextraction ridges of 10 sheep. There were 10 implants per group: RBM surface (control), RBM + anodised, RBM + anodised + fluoride, and titanium alloy + anodised surface. Resonant frequency analysis (RFA) was measured in implant stability quotient (ISQ) at surgery and at sacrifice after 1-month unloaded healing. Mean bone-implant contact (% BIC) was measured in undemineralised ground sections for the best three consecutive threads. One of 40 implants showed evidence of failure. RFA differed between groups at surgery but not after 1 month. RFA values increased nonsignificantly for all implants after 1 month, except for controls. There was a marked difference in BIC after 1-month healing, with higher values for alloy implants, followed by anodised + fluoride and anodised implants. Anodisation increased early osseointegration of rough-surfaced implants by 50–80%. RFA testing lacked sufficient resolution to detect this improvement. Whether this gain in early bone-implant contact is clinically significant is the subject of future experiments.
ISSN:2314-6133
2314-6141