Developments in Synthesis and Potential Electronic and Magnetic Applications of Pristine and Doped Graphynes

Doping and its consequences on the electronic features, optoelectronic features, and magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider numerous chemically and dimensionally different structures are discussed. Simultaneous or subsequent doping with hete...

Full description

Bibliographic Details
Main Authors: Gisya Abdi, Abdolhamid Alizadeh, Wojciech Grochala, Andrzej Szczurek
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/9/2268
Description
Summary:Doping and its consequences on the electronic features, optoelectronic features, and magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider numerous chemically and dimensionally different structures are discussed. Simultaneous or subsequent doping with heteroatoms, controlling dimensions, applying strain, and applying external electric fields can serve as effective ways to modulate the band structure of these new sp<sup>2</sup>/sp allotropes of carbon. The fundamental band gap is crucially dependent on morphology, with low dimensional GYs displaying a broader band gap than their bulk counterparts. Accurately chosen precursors and synthesis conditions ensure complete control of the morphological, electronic, and physicochemical properties of resulting GY sheets as well as the distribution of dopants deposited on GY surfaces. The uniform and quantitative inclusion of non-metallic (B, Cl, N, O, or P) and metallic (Fe, Co, or Ni) elements into graphyne derivatives were theoretically and experimentally studied, which improved their electronic and magnetic properties as row systems or in heterojunction. The effect of heteroatoms associated with metallic impurities on the magnetic properties of GYs was investigated. Finally, the flexibility of doped GYs’ electronic and magnetic features recommends them for new electronic and optoelectronic applications.
ISSN:2079-4991