Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia.
Formation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0212059 |
id |
doaj-7f9033b73a694306bb266a8a877436cb |
---|---|
record_format |
Article |
spelling |
doaj-7f9033b73a694306bb266a8a877436cb2021-03-03T20:53:57ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01142e021205910.1371/journal.pone.0212059Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia.Xiangfeng TanJanusz J ZwiazekFormation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses. Relative transcript abundance of the examined aquaporins in lateral roots was reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing additional evidence that lateral roots were more affected by hypoxia compared with adventitious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventitious roots compared with aerated roots, while the expression of fermentation-related genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher in lateral roots compared with adventitious roots. Since root porosity was greater in adventitious compared with lateral roots, the results suggest that the improved O2 delivery and stable root aquaporin expression in adventitious roots were likely the key factors helping flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently, shoot gas exchange.https://doi.org/10.1371/journal.pone.0212059 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiangfeng Tan Janusz J Zwiazek |
spellingShingle |
Xiangfeng Tan Janusz J Zwiazek Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS ONE |
author_facet |
Xiangfeng Tan Janusz J Zwiazek |
author_sort |
Xiangfeng Tan |
title |
Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. |
title_short |
Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. |
title_full |
Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. |
title_fullStr |
Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. |
title_full_unstemmed |
Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. |
title_sort |
stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (nicotiana tabacum) exposed to root hypoxia. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2019-01-01 |
description |
Formation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses. Relative transcript abundance of the examined aquaporins in lateral roots was reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing additional evidence that lateral roots were more affected by hypoxia compared with adventitious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventitious roots compared with aerated roots, while the expression of fermentation-related genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher in lateral roots compared with adventitious roots. Since root porosity was greater in adventitious compared with lateral roots, the results suggest that the improved O2 delivery and stable root aquaporin expression in adventitious roots were likely the key factors helping flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently, shoot gas exchange. |
url |
https://doi.org/10.1371/journal.pone.0212059 |
work_keys_str_mv |
AT xiangfengtan stableexpressionofaquaporinsandhypoxiaresponsivegenesinadventitiousrootsarelinkedtomaintaininghydraulicconductanceintobacconicotianatabacumexposedtoroothypoxia AT januszjzwiazek stableexpressionofaquaporinsandhypoxiaresponsivegenesinadventitiousrootsarelinkedtomaintaininghydraulicconductanceintobacconicotianatabacumexposedtoroothypoxia |
_version_ |
1714819904261062656 |