High-Precision Combined Tidal Forecasting Model

To improve the overall accuracy of tidal forecasting and ameliorate the low accuracy of single harmonic analysis, this paper proposes a combined tidal forecasting model based on harmonic analysis and autoregressive integrated moving average–support vector regression (ARIMA-SVR). In tidal a...

Full description

Bibliographic Details
Main Authors: Jiao Liu, Guoyou Shi, Kaige Zhu
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/12/3/65
Description
Summary:To improve the overall accuracy of tidal forecasting and ameliorate the low accuracy of single harmonic analysis, this paper proposes a combined tidal forecasting model based on harmonic analysis and autoregressive integrated moving average–support vector regression (ARIMA-SVR). In tidal analysis, the resultant tide can be considered as a superposition of the astronomical tide level and the non-astronomical tidal level, which are affected by the tide-generating force and environmental factors, respectively. The tidal data are de-noised via wavelet analysis, and the astronomical tide level is subsequently calculated via harmonic analysis. The residual sequence generated via harmonic analysis is used as the sample dataset of the non-astronomical tidal level, and the tidal height of the system is calculated by the ARIMA-SVR model. Finally, the tidal values are predicted by linearly summing the calculated results of both systems. The simulation results were validated against the measured tidal data at the tidal station of Bay Waveland Yacht Club, USA. By considering the residual non-astronomical tide level effects (which are ignored in traditional harmonic analysis), the combined model improves the accuracy of tidal prediction. Moreover, the combined model is feasible and efficient.
ISSN:1999-4893