Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>

The designers of radial turbomachinery need detailed information on the impact of the side chamber flow on axial thrust and torque. A previous paper investigated centripetal flow through narrow rotor–stator cavities and compared axial thrust, rotor torque and radial pressure distribution to the case...

Full description

Bibliographic Details
Main Authors: Tilman Raphael Schröder, Sebastian Schuster, Dieter Brillert
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:International Journal of Turbomachinery, Propulsion and Power
Subjects:
Online Access:https://www.mdpi.com/2504-186X/6/2/13
id doaj-7f448a33b8164797a9ec3205315a397c
record_format Article
spelling doaj-7f448a33b8164797a9ec3205315a397c2021-06-01T01:10:45ZengMDPI AGInternational Journal of Turbomachinery, Propulsion and Power2504-186X2021-05-016131310.3390/ijtpp6020013Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>Tilman Raphael Schröder0Sebastian Schuster1Dieter Brillert2Chair of Turbomachinery, University of Duisburg-Essen, 47057 Duisburg, GermanyChair of Turbomachinery, University of Duisburg-Essen, 47057 Duisburg, GermanyChair of Turbomachinery, University of Duisburg-Essen, 47057 Duisburg, GermanyThe designers of radial turbomachinery need detailed information on the impact of the side chamber flow on axial thrust and torque. A previous paper investigated centripetal flow through narrow rotor–stator cavities and compared axial thrust, rotor torque and radial pressure distribution to the case without through-flow. Consequently, this paper extends the investigated range to centrifugal through-flow as it may occur in the hub side chamber of radial turbomachinery. The chosen operating conditions are representative of high-pressure centrifugal compressors used in, for example, carbon capture and storage applications as well as hydrogen compression. To date, only the Reynolds number range up to <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>7</mn></msup></mrow></semantics></math></inline-formula> has been investigated for centrifugal through-flow. This paper extends the range to Reynolds numbers of <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>8</mn></msup></mrow></semantics></math></inline-formula> and reports results of experimental and numerical investigations. It focuses on the radial pressure distribution in the rotor–stator cavity and shows the influence of the Reynolds number, cavity width and centrifugal mass flow rate. It therefore extends the range of available valid data that can be used to design radial turbomachinery. Additionally, this analysis compares the results to data and models from scientific literature, showing that in the higher Reynolds number range, a new correlation is required. Finally, the analysis of velocity profiles and wall shear delineates the switch from purely radial outflow in the cavity to outflow on the rotor and inflow on the stator at high Reynolds numbers in comparison to the results reported by others for Reynolds numbers up to <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>7</mn></msup></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2504-186X/6/2/13radial compressor side chamberrotor–stator cavitycentrifugal through-flowaxial thrustradial pressure distributionBatchelor flow
collection DOAJ
language English
format Article
sources DOAJ
author Tilman Raphael Schröder
Sebastian Schuster
Dieter Brillert
spellingShingle Tilman Raphael Schröder
Sebastian Schuster
Dieter Brillert
Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
International Journal of Turbomachinery, Propulsion and Power
radial compressor side chamber
rotor–stator cavity
centrifugal through-flow
axial thrust
radial pressure distribution
Batchelor flow
author_facet Tilman Raphael Schröder
Sebastian Schuster
Dieter Brillert
author_sort Tilman Raphael Schröder
title Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
title_short Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
title_full Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
title_fullStr Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
title_full_unstemmed Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >10<sup>8</sup>
title_sort experimental investigation of centrifugal flow in rotor–stator cavities at high reynolds numbers >10<sup>8</sup>
publisher MDPI AG
series International Journal of Turbomachinery, Propulsion and Power
issn 2504-186X
publishDate 2021-05-01
description The designers of radial turbomachinery need detailed information on the impact of the side chamber flow on axial thrust and torque. A previous paper investigated centripetal flow through narrow rotor–stator cavities and compared axial thrust, rotor torque and radial pressure distribution to the case without through-flow. Consequently, this paper extends the investigated range to centrifugal through-flow as it may occur in the hub side chamber of radial turbomachinery. The chosen operating conditions are representative of high-pressure centrifugal compressors used in, for example, carbon capture and storage applications as well as hydrogen compression. To date, only the Reynolds number range up to <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>7</mn></msup></mrow></semantics></math></inline-formula> has been investigated for centrifugal through-flow. This paper extends the range to Reynolds numbers of <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>8</mn></msup></mrow></semantics></math></inline-formula> and reports results of experimental and numerical investigations. It focuses on the radial pressure distribution in the rotor–stator cavity and shows the influence of the Reynolds number, cavity width and centrifugal mass flow rate. It therefore extends the range of available valid data that can be used to design radial turbomachinery. Additionally, this analysis compares the results to data and models from scientific literature, showing that in the higher Reynolds number range, a new correlation is required. Finally, the analysis of velocity profiles and wall shear delineates the switch from purely radial outflow in the cavity to outflow on the rotor and inflow on the stator at high Reynolds numbers in comparison to the results reported by others for Reynolds numbers up to <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mspace width="-0.84998pt"></mspace><mi>e</mi><mo>=</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>·</mi><mspace width="0.166667em"></mspace><msup><mn>10</mn><mn>7</mn></msup></mrow></semantics></math></inline-formula>.
topic radial compressor side chamber
rotor–stator cavity
centrifugal through-flow
axial thrust
radial pressure distribution
Batchelor flow
url https://www.mdpi.com/2504-186X/6/2/13
work_keys_str_mv AT tilmanraphaelschroder experimentalinvestigationofcentrifugalflowinrotorstatorcavitiesathighreynoldsnumbers10sup8sup
AT sebastianschuster experimentalinvestigationofcentrifugalflowinrotorstatorcavitiesathighreynoldsnumbers10sup8sup
AT dieterbrillert experimentalinvestigationofcentrifugalflowinrotorstatorcavitiesathighreynoldsnumbers10sup8sup
_version_ 1721412985595887616