A Link between the Increase in Electroencephalographic Coherence and Performance Improvement in Operating a Brain-Computer Interface

We study the relationship between electroencephalographic (EEG) coherence and accuracy in operating a brain-computer interface (BCI). In our case, the BCI is controlled through motor imagery. Hence, a number of volunteers were trained using different training paradigms: classical visual feedback, au...

Full description

Bibliographic Details
Main Authors: Irma Nayeli Angulo-Sherman, David Gutiérrez
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2015/824175
Description
Summary:We study the relationship between electroencephalographic (EEG) coherence and accuracy in operating a brain-computer interface (BCI). In our case, the BCI is controlled through motor imagery. Hence, a number of volunteers were trained using different training paradigms: classical visual feedback, auditory stimulation, and functional electrical stimulation (FES). After each training session, the volunteers’ accuracy in operating the BCI was assessed, and the event-related coherence (ErCoh) was calculated for all possible combinations of pairs of EEG sensors. After at least four training sessions, we searched for significant differences in accuracy and ErCoh using one-way analysis of variance (ANOVA) and multiple comparison tests. Our results show that there exists a high correlation between an increase in ErCoh and performance improvement, and this effect is mainly localized in the centrofrontal and centroparietal brain regions for the case of our motor imagery task. This result has a direct implication with the development of new techniques to evaluate BCI performance and the process of selecting a feedback modality that better enhances the volunteer’s capacity to operate a BCI system.
ISSN:1687-5265
1687-5273