Limit Cycle Bifurcations Near a Cuspidal Loop

In this paper, we study limit cycle bifurcation near a cuspidal loop for a general near-Hamiltonian system by using expansions of the first order Melnikov functions. We give a method to compute more coefficients of the expansions to find more limit cycles near the cuspidal loop. As an application ex...

Full description

Bibliographic Details
Main Authors: Pan Liu, Maoan Han
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/9/1425
Description
Summary:In this paper, we study limit cycle bifurcation near a cuspidal loop for a general near-Hamiltonian system by using expansions of the first order Melnikov functions. We give a method to compute more coefficients of the expansions to find more limit cycles near the cuspidal loop. As an application example, we considered a polynomial near-Hamiltonian system and found 12 limit cycles near the cuspidal loop and the center.
ISSN:2073-8994