Summary: | Recent studies have highlighted the importance of local environmental factors to determine the fine-scale heterogeneity of malaria transmission and exposure to the vector. In this work, we compare a classical GLM model with backward selection with different versions of an automatic LASSO-based algorithm with 2-level cross-validation aiming to build a predictive model of the space and time dependent individual exposure to the malaria vector, using entomological and environmental data from a cohort study in Benin. Although the GLM can outperform the LASSO model with appropriate engineering, the best model in terms of predictive power was found to be the LASSO-based model. Our approach can be adapted to different topics and may therefore be helpful to address prediction issues in other health sciences domains.
|