Summary: | The predation behavior of the pistol shrimp is extremely special, and the predation process will produce a huge popping sound, which has caused extensive research by scholars from all over the world. This article carried out a study on the rapid closing jet mechanism of pistol shrimp’s claws. A theoretical model, based on the hydrodynamic characteristics of seawater and the theory of fluid-structure coupling, was proposed for the interaction between the claws and seawater. A simulation model was established using the finite volume software Fluent, and the rapid closing jet mechanism of pistol shrimp’s claws was verified by using fluid dynamic grid. This article studied the influence of different fluid models on the simulation results. The effects of the claws’ closing angular velocity and angular acceleration on the interaction between the claws and seawater were analyzed, which provides a theoretical basis for the development of new underwater kinetic energy weapons.
|