Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality

AbstractMode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolution...

Full description

Bibliographic Details
Main Authors: Geethu Elizabath Thomas, Kiran Ayyamperumal Geetha, Lesly Augustine, Sabu Mamiyil, George Thomas
Format: Article
Language:English
Published: Frontiers Media S.A. 2016-12-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01913/full
id doaj-7eff95956ba34984b9939c1c32595e8d
record_format Article
spelling doaj-7eff95956ba34984b9939c1c32595e8d2020-11-24T23:21:32ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2016-12-01710.3389/fpls.2016.01913235663Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonalityGeethu Elizabath Thomas0Kiran Ayyamperumal Geetha1Lesly Augustine2Sabu Mamiyil3George Thomas4St. Thomas CollegeRajiv Gandhi Centre for BiotechnologyRajiv Gandhi Centre for BiotechnologyUniversity of CalicutRajiv Gandhi Centre for BiotechnolgoyAbstractMode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolutionary arms race with parasites (Red queen) whereas, without segregation and recombination, the obligate asexual multiplication may push a species into extinction due to the steady accumulation of deleterious mutations (Muller’s ratchet). However, the extent of linearity between reproductive strategies, genetic diversity and population fitness, and the contributions of different breeding strategies to population fitness are yet to be understood clearly. Genus Zingiber belonging to the pan-tropic family Zingiberaceae represents a good system to study contributions of different breeding behaviour on genetic diversity and population fitness, as this genus comprises species with contrasting breeding systems. In this study, we analyzed breeding behaviour, amplified fragment length polymorphism (AFLP) diversity and response to the soft-rot pathogen Pythium aphanidermatum in 18 natural populations of three wild Zingiber spp.: Z. neesanum, Z. nimmonii and Z. zerumbet, together with the obligately asexual cultivated congener, ginger (Z. officinale). Ginger showed an exceptionally narrow genetic base, and adding to this, all the tested cultivars were uniformly susceptible to soft-rot. Concordant with the postulates of Muller’s ratchet, the background selection may be continuously pushing ginger into the ancestral state, rendering it inefficient in host-pathogen coevolution. Z. neesanum and Z. nimmonii populations were sexual and genetically diverse; however, contrary to Red Queen expectations, the populations were highly susceptible to soft-rot. Z. zerumbet showed a hemiclonal breeding behaviour. The populations inhabiting forest understory were large and continuous, sexual and genetically diverse, but were susceptible, whereas populations inhabiting the revenue land were fragmented and monoclonal, but were resistant. It may be possible that, when genetic recombination becomes at a premium due to the genetic constraints imparted by habitat fragmentation or pathogen pressure, Z. zerumbet trigger asexual methods in order to preserve genotypes with adaptive fitness. A co-evolutionary feedback seems to occur between defense and reproduction in Z. zerumbet. Presumably, species with hemiclonal potential may have a fair chance to survive ecological undulations.http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01913/fullDisease Resistancegenetic diversityMuller’s ratchetBreeding strategyRed QueenZingiber spp.
collection DOAJ
language English
format Article
sources DOAJ
author Geethu Elizabath Thomas
Kiran Ayyamperumal Geetha
Lesly Augustine
Sabu Mamiyil
George Thomas
spellingShingle Geethu Elizabath Thomas
Kiran Ayyamperumal Geetha
Lesly Augustine
Sabu Mamiyil
George Thomas
Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
Frontiers in Plant Science
Disease Resistance
genetic diversity
Muller’s ratchet
Breeding strategy
Red Queen
Zingiber spp.
author_facet Geethu Elizabath Thomas
Kiran Ayyamperumal Geetha
Lesly Augustine
Sabu Mamiyil
George Thomas
author_sort Geethu Elizabath Thomas
title Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
title_short Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
title_full Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
title_fullStr Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
title_full_unstemmed Analyses between Reproductive Behaviour, Genetic Diversity and Pythium Responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality
title_sort analyses between reproductive behaviour, genetic diversity and pythium responsiveness in zingiber spp. reveal an adaptive significance for hemiclonality
publisher Frontiers Media S.A.
series Frontiers in Plant Science
issn 1664-462X
publishDate 2016-12-01
description AbstractMode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolutionary arms race with parasites (Red queen) whereas, without segregation and recombination, the obligate asexual multiplication may push a species into extinction due to the steady accumulation of deleterious mutations (Muller’s ratchet). However, the extent of linearity between reproductive strategies, genetic diversity and population fitness, and the contributions of different breeding strategies to population fitness are yet to be understood clearly. Genus Zingiber belonging to the pan-tropic family Zingiberaceae represents a good system to study contributions of different breeding behaviour on genetic diversity and population fitness, as this genus comprises species with contrasting breeding systems. In this study, we analyzed breeding behaviour, amplified fragment length polymorphism (AFLP) diversity and response to the soft-rot pathogen Pythium aphanidermatum in 18 natural populations of three wild Zingiber spp.: Z. neesanum, Z. nimmonii and Z. zerumbet, together with the obligately asexual cultivated congener, ginger (Z. officinale). Ginger showed an exceptionally narrow genetic base, and adding to this, all the tested cultivars were uniformly susceptible to soft-rot. Concordant with the postulates of Muller’s ratchet, the background selection may be continuously pushing ginger into the ancestral state, rendering it inefficient in host-pathogen coevolution. Z. neesanum and Z. nimmonii populations were sexual and genetically diverse; however, contrary to Red Queen expectations, the populations were highly susceptible to soft-rot. Z. zerumbet showed a hemiclonal breeding behaviour. The populations inhabiting forest understory were large and continuous, sexual and genetically diverse, but were susceptible, whereas populations inhabiting the revenue land were fragmented and monoclonal, but were resistant. It may be possible that, when genetic recombination becomes at a premium due to the genetic constraints imparted by habitat fragmentation or pathogen pressure, Z. zerumbet trigger asexual methods in order to preserve genotypes with adaptive fitness. A co-evolutionary feedback seems to occur between defense and reproduction in Z. zerumbet. Presumably, species with hemiclonal potential may have a fair chance to survive ecological undulations.
topic Disease Resistance
genetic diversity
Muller’s ratchet
Breeding strategy
Red Queen
Zingiber spp.
url http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01913/full
work_keys_str_mv AT geethuelizabaththomas analysesbetweenreproductivebehaviourgeneticdiversityandpythiumresponsivenessinzingiberspprevealanadaptivesignificanceforhemiclonality
AT kiranayyamperumalgeetha analysesbetweenreproductivebehaviourgeneticdiversityandpythiumresponsivenessinzingiberspprevealanadaptivesignificanceforhemiclonality
AT leslyaugustine analysesbetweenreproductivebehaviourgeneticdiversityandpythiumresponsivenessinzingiberspprevealanadaptivesignificanceforhemiclonality
AT sabumamiyil analysesbetweenreproductivebehaviourgeneticdiversityandpythiumresponsivenessinzingiberspprevealanadaptivesignificanceforhemiclonality
AT georgethomas analysesbetweenreproductivebehaviourgeneticdiversityandpythiumresponsivenessinzingiberspprevealanadaptivesignificanceforhemiclonality
_version_ 1725571353405292544