On the spectrum of linear dependence graph of a finite dimensional vector space
<p>In this article, we introduce and characterize linear dependence graph <span class="math">Γ(<em>V</em>)</span> of a finite dimensional vector space <span class="math"><em>V</em></span> over a finite field of <span class=...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
2019-04-01
|
Series: | Electronic Journal of Graph Theory and Applications |
Subjects: | |
Online Access: | https://www.ejgta.org/index.php/ejgta/article/view/493 |
id |
doaj-7eeb7b21c6c941d39f24f86cbbb5b4f0 |
---|---|
record_format |
Article |
spelling |
doaj-7eeb7b21c6c941d39f24f86cbbb5b4f02021-03-11T01:13:06ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872019-04-0171435910.5614/ejgta.2019.7.1.4135On the spectrum of linear dependence graph of a finite dimensional vector spaceSushobhan Maity0A. K. Bhuniya1Department of Mathematics, Visva-Bharati, Santiniketan-731235, IndiaDepartment of Mathematics, Visva-Bharati, Santiniketan-731235, India<p>In this article, we introduce and characterize linear dependence graph <span class="math">Γ(<em>V</em>)</span> of a finite dimensional vector space <span class="math"><em>V</em></span> over a finite field of <span class="math"><em>q</em></span> elements. Two vector spaces <span class="math"><em>U</em></span> and <span class="math"><em>V</em></span> are isomorphic if and only if their linear dependence graphs <span class="math">Γ(<em>U</em>)</span> and <span class="math">Γ(<em>V</em>)</span> are isomorphic. The linear dependence graph <span class="math">Γ(<em>V</em>)</span> is Eulerian if and only if <span class="math"><em>q</em></span> is odd. Highly symmetric nature of <span class="math">Γ(<em>V</em>)</span> is reflected in its automorphism group <span class="math"><em>S</em><sub><em>m</em></sub> ⊕ ( ⊕ <sub><em>i</em> = 1</sub><sup><em>m</em></sup><em>S</em><sub><em>q</em> − 1</sub>)</span>, where <span class="math"><em>m</em> = (<em>q</em><sup><em>n</em></sup> − 1)/(<em>q</em> − 1)</span>. Besides these basic characterizations of <span class="math">Γ(<em>V</em>)</span>, the main contribution of this article is to find eigen values of adjacency matrix, Laplacian matrix and distance matrix of this graph.</p>https://www.ejgta.org/index.php/ejgta/article/view/493graph, linear dependence, laplacian, distance, spectrum |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sushobhan Maity A. K. Bhuniya |
spellingShingle |
Sushobhan Maity A. K. Bhuniya On the spectrum of linear dependence graph of a finite dimensional vector space Electronic Journal of Graph Theory and Applications graph, linear dependence, laplacian, distance, spectrum |
author_facet |
Sushobhan Maity A. K. Bhuniya |
author_sort |
Sushobhan Maity |
title |
On the spectrum of linear dependence graph of a finite dimensional vector space |
title_short |
On the spectrum of linear dependence graph of a finite dimensional vector space |
title_full |
On the spectrum of linear dependence graph of a finite dimensional vector space |
title_fullStr |
On the spectrum of linear dependence graph of a finite dimensional vector space |
title_full_unstemmed |
On the spectrum of linear dependence graph of a finite dimensional vector space |
title_sort |
on the spectrum of linear dependence graph of a finite dimensional vector space |
publisher |
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia |
series |
Electronic Journal of Graph Theory and Applications |
issn |
2338-2287 |
publishDate |
2019-04-01 |
description |
<p>In this article, we introduce and characterize linear dependence graph <span class="math">Γ(<em>V</em>)</span> of a finite dimensional vector space <span class="math"><em>V</em></span> over a finite field of <span class="math"><em>q</em></span> elements. Two vector spaces <span class="math"><em>U</em></span> and <span class="math"><em>V</em></span> are isomorphic if and only if their linear dependence graphs <span class="math">Γ(<em>U</em>)</span> and <span class="math">Γ(<em>V</em>)</span> are isomorphic. The linear dependence graph <span class="math">Γ(<em>V</em>)</span> is Eulerian if and only if <span class="math"><em>q</em></span> is odd. Highly symmetric nature of <span class="math">Γ(<em>V</em>)</span> is reflected in its automorphism group <span class="math"><em>S</em><sub><em>m</em></sub> ⊕ ( ⊕ <sub><em>i</em> = 1</sub><sup><em>m</em></sup><em>S</em><sub><em>q</em> − 1</sub>)</span>, where <span class="math"><em>m</em> = (<em>q</em><sup><em>n</em></sup> − 1)/(<em>q</em> − 1)</span>. Besides these basic characterizations of <span class="math">Γ(<em>V</em>)</span>, the main contribution of this article is to find eigen values of adjacency matrix, Laplacian matrix and distance matrix of this graph.</p> |
topic |
graph, linear dependence, laplacian, distance, spectrum |
url |
https://www.ejgta.org/index.php/ejgta/article/view/493 |
work_keys_str_mv |
AT sushobhanmaity onthespectrumoflineardependencegraphofafinitedimensionalvectorspace AT akbhuniya onthespectrumoflineardependencegraphofafinitedimensionalvectorspace |
_version_ |
1714790757351555072 |