Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale

Let $mathbb{T}$ be a periodic time scale. We use a fixed point theorem due to Krasnosel'skii to show that the nonlinear neutral dynamic equation with delay $$ x^{Delta}(t) = -a(t)x^{sigma}(t) + left(Q(t,x(t), x(t-g(t)))) ight)^{Delta} + Gig(t,x(t), x(t-g(t))ig), t in mathbb{T}, $$ has a periodi...

Full description

Bibliographic Details
Main Authors: Eric R. Kaufmann, Youssef N. Raffoul
Format: Article
Language:English
Published: Texas State University 2007-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2007/27/abstr.html