Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks

Time Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a we...

Full description

Bibliographic Details
Main Authors: Xing Wang, Chris P. Tsokos, Abolfazl Saghafi
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2018-09-01
Series:Journal of Finance and Data Science
Online Access:http://www.sciencedirect.com/science/article/pii/S2405918817300636
id doaj-7eb539075aad45e48b4561e8df87ee91
record_format Article
spelling doaj-7eb539075aad45e48b4561e8df87ee912021-02-02T04:09:14ZengKeAi Communications Co., Ltd.Journal of Finance and Data Science2405-91882018-09-0143172182Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural NetworksXing Wang0Chris P. Tsokos1Abolfazl Saghafi2University of Wisconsin-Madison, Madison, WI, USADepartment of Mathematics and Statistics, University of South Florida, Tampa, FL, USA; Corresponding author.Department of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA, USATime Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a weakness; it may not produce stable kernel estimates. In this article, a novel estimation procedure is developed using Artificial Neural Networks which eliminates this inherent issue. Moreover, evaluating the performance of the kernel estimation in terms of the uniformity of Probability Integral Transform (PIT) shows a significant improvement using the proposed method. A real-life application of TDKDE parameter estimation on NASDQ stock returns validates the flawless performance of the new technique. Keywords: Time Dependent Kernel Density Estimation, Artificial Neural Networks, Probability Integral Transform, Finance, Machine learning, 2010 MSC: 62G07, 62M45, 91G50http://www.sciencedirect.com/science/article/pii/S2405918817300636
collection DOAJ
language English
format Article
sources DOAJ
author Xing Wang
Chris P. Tsokos
Abolfazl Saghafi
spellingShingle Xing Wang
Chris P. Tsokos
Abolfazl Saghafi
Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
Journal of Finance and Data Science
author_facet Xing Wang
Chris P. Tsokos
Abolfazl Saghafi
author_sort Xing Wang
title Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
title_short Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
title_full Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
title_fullStr Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
title_full_unstemmed Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks
title_sort improved parameter estimation of time dependent kernel density by using artificial neural networks
publisher KeAi Communications Co., Ltd.
series Journal of Finance and Data Science
issn 2405-9188
publishDate 2018-09-01
description Time Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a weakness; it may not produce stable kernel estimates. In this article, a novel estimation procedure is developed using Artificial Neural Networks which eliminates this inherent issue. Moreover, evaluating the performance of the kernel estimation in terms of the uniformity of Probability Integral Transform (PIT) shows a significant improvement using the proposed method. A real-life application of TDKDE parameter estimation on NASDQ stock returns validates the flawless performance of the new technique. Keywords: Time Dependent Kernel Density Estimation, Artificial Neural Networks, Probability Integral Transform, Finance, Machine learning, 2010 MSC: 62G07, 62M45, 91G50
url http://www.sciencedirect.com/science/article/pii/S2405918817300636
work_keys_str_mv AT xingwang improvedparameterestimationoftimedependentkerneldensitybyusingartificialneuralnetworks
AT chrisptsokos improvedparameterestimationoftimedependentkerneldensitybyusingartificialneuralnetworks
AT abolfazlsaghafi improvedparameterestimationoftimedependentkerneldensitybyusingartificialneuralnetworks
_version_ 1724306342944964608