A Comparison Study of Mechanism: Cu2+ Adsorption on Different Adsorbents and Their Surface-Modified Adsorbents

The isothermal adsorption kinetics of Cu2+ onto Carbon Black (CB) and Oxidized Carbon Black (OCB) were studied under different solution conditions and compared with bentonite and organic bentonite with the hexadecyltrimethylammonium bromide (HDTMA). The adsorption capacities followed the order of OC...

Full description

Bibliographic Details
Main Authors: Yaqin Yu, Xinrui Li, Jiemin Cheng
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2016/7936258
Description
Summary:The isothermal adsorption kinetics of Cu2+ onto Carbon Black (CB) and Oxidized Carbon Black (OCB) were studied under different solution conditions and compared with bentonite and organic bentonite with the hexadecyltrimethylammonium bromide (HDTMA). The adsorption capacities followed the order of OCB > CB > organic bentonite > bentonite, which was consistent with the orders of their surface roughness and specific surface area. The Fourier transmission infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM) were used to explore the adsorption mechanism at molecular level. The adsorption process onto CB was physical adsorption. However, with the increase of oxygen-containing functional groups (C=O, C-O, and CNO), the chelation adsorption onto OCB became gradually dominant except physical adsorption. The ion exchange adsorption was the major adsorption mechanism of bentonite. The compounds were introduced into clay interlayer by complexing reaction with Cu2+, which improved the adsorption capacity of organic bentonite. The results present a significant implication for the environmental fate assessment of heavy metal pollution.
ISSN:2090-9063
2090-9071