Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions

The aim of the study was to analyze the relationship between body composition and the amplitude of SEMG rectifier spine in children with scoliotic changes. The spine was investigated using optoelectronic Diers formetric III 4D. Body composition was determined using a Tanita Body Composition Analyzer...

Full description

Bibliographic Details
Main Authors: Jacek Wilczyński, Przemysław Karolak, Sylwia Janecka
Format: Article
Language:English
Published: Kazimierz Wielki University 2018-12-01
Series:Journal of Education, Health and Sport
Subjects:
Online Access:http://www.ojs.ukw.edu.pl/index.php/johs/article/view/6418
id doaj-7e83db432bfe42868f0b43b31e974e32
record_format Article
spelling doaj-7e83db432bfe42868f0b43b31e974e322020-11-24T21:35:10ZengKazimierz Wielki UniversityJournal of Education, Health and Sport2391-83062018-12-0181260061210.5281/zenodo.25262885765Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesionsJacek Wilczyński0Przemysław Karolak1Sylwia Janecka2Department Posturology, Hearing and Balance Rehabilitation, Institute of Physiotherapy, Faculty of Medicine and Health Sciences, Jan Kochanowski University in KielcePh.D. student, Institute of Physiotherapy, Faculty of Medicine and Health Sciences, Jan Kochanowski University in KielcePh.D. student, Institute of Physiotherapy, Faculty of Medicine and Health Sciences, Jan Kochanowski University in KielceThe aim of the study was to analyze the relationship between body composition and the amplitude of SEMG rectifier spine in children with scoliotic changes. The spine was investigated using optoelectronic Diers formetric III 4D. Body composition was determined using a Tanita Body Composition Analyzer MC 780M. Analysis of the amplitude SEMG rectifier spine was performed using a 12-channel camera Noraxon TeleMyo DTS. The biggest differences in the absolute values of the studied variables related to body composition BMR (kJ). The most important and statistically significant predictors mock for the variable composition of the body spine and amplitude rectifier tested in different positions in the group of scoliosis proved standing position lumbar left (p = 0.01), standing position lumbar right (p = 0.01) and lying front right side of the thoracic (p = 0, 02). The variance explained by the independent variables in the model adopted is 35% of the total variation (R^2 = 0.35), indicating a small adjustment for the data, but the expected level of statistical significance (p = 0.01) has been fulfilled, and to give the corresponding the value of a statistical test F = 3.49. The group scoliotic bases most important and statistically significant predictor model was the torso up right thoracic (p = 0.0001), lower limbs up the right side of the lumbar (p = 0.044), trunk up the right side of the lumbar (p = 0.016) and the top of the torso thoracic left (p = 0.006). The model was explained only in 39% (R^2 = 0.39), which is low, but the target level of statistical significance (p = 0.001) was also satisfied. and give the corresponding value of the statistical test F = 4.89. In children with scoliotic changes SEMG amplitude measurement helps identify the muscles need strengthening or relaxation, as well as the selection of appropriate corrective exercises.http://www.ojs.ukw.edu.pl/index.php/johs/article/view/6418children’s body compositionscoliosisscoliotic posturesemg amplitude of the spine rectifier
collection DOAJ
language English
format Article
sources DOAJ
author Jacek Wilczyński
Przemysław Karolak
Sylwia Janecka
spellingShingle Jacek Wilczyński
Przemysław Karolak
Sylwia Janecka
Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
Journal of Education, Health and Sport
children’s body composition
scoliosis
scoliotic posture
semg amplitude of the spine rectifier
author_facet Jacek Wilczyński
Przemysław Karolak
Sylwia Janecka
author_sort Jacek Wilczyński
title Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
title_short Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
title_full Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
title_fullStr Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
title_full_unstemmed Body composition and SEMG amplitude of the spine rectifier in children with scoliotic lesions
title_sort body composition and semg amplitude of the spine rectifier in children with scoliotic lesions
publisher Kazimierz Wielki University
series Journal of Education, Health and Sport
issn 2391-8306
publishDate 2018-12-01
description The aim of the study was to analyze the relationship between body composition and the amplitude of SEMG rectifier spine in children with scoliotic changes. The spine was investigated using optoelectronic Diers formetric III 4D. Body composition was determined using a Tanita Body Composition Analyzer MC 780M. Analysis of the amplitude SEMG rectifier spine was performed using a 12-channel camera Noraxon TeleMyo DTS. The biggest differences in the absolute values of the studied variables related to body composition BMR (kJ). The most important and statistically significant predictors mock for the variable composition of the body spine and amplitude rectifier tested in different positions in the group of scoliosis proved standing position lumbar left (p = 0.01), standing position lumbar right (p = 0.01) and lying front right side of the thoracic (p = 0, 02). The variance explained by the independent variables in the model adopted is 35% of the total variation (R^2 = 0.35), indicating a small adjustment for the data, but the expected level of statistical significance (p = 0.01) has been fulfilled, and to give the corresponding the value of a statistical test F = 3.49. The group scoliotic bases most important and statistically significant predictor model was the torso up right thoracic (p = 0.0001), lower limbs up the right side of the lumbar (p = 0.044), trunk up the right side of the lumbar (p = 0.016) and the top of the torso thoracic left (p = 0.006). The model was explained only in 39% (R^2 = 0.39), which is low, but the target level of statistical significance (p = 0.001) was also satisfied. and give the corresponding value of the statistical test F = 4.89. In children with scoliotic changes SEMG amplitude measurement helps identify the muscles need strengthening or relaxation, as well as the selection of appropriate corrective exercises.
topic children’s body composition
scoliosis
scoliotic posture
semg amplitude of the spine rectifier
url http://www.ojs.ukw.edu.pl/index.php/johs/article/view/6418
work_keys_str_mv AT jacekwilczynski bodycompositionandsemgamplitudeofthespinerectifierinchildrenwithscolioticlesions
AT przemysławkarolak bodycompositionandsemgamplitudeofthespinerectifierinchildrenwithscolioticlesions
AT sylwiajanecka bodycompositionandsemgamplitudeofthespinerectifierinchildrenwithscolioticlesions
_version_ 1725946256800350208