Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method
The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated ag...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Rotating Machinery |
Online Access: | http://dx.doi.org/10.1155/2015/679576 |
Summary: | The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS), is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results. |
---|---|
ISSN: | 1023-621X 1542-3034 |