On R-left cancellative semigroups

Suppose R is a Green’s relation on a semigroup S and let R LC (S) = {a ∈ S : ∀x , y ∈ S, ax = ay ⇒ x R y} It is obvious that RLC(S) is a subsemigroup of S if it is nonempty. The purpose of this paper is to study some properties of RLC(S .

Bibliographic Details
Main Authors: Chaiwat Namnak, Ekkachai Laysirikul, Piyaporn Tantong
Format: Article
Language:English
Published: Prince of Songkla University 2018-02-01
Series:Songklanakarin Journal of Science and Technology (SJST)
Subjects:
Online Access:http://rdo.psu.ac.th/sjstweb/journal/40-1/40-1-12.pdf
id doaj-7e2fd052013c495699abb3ae09dadb3e
record_format Article
spelling doaj-7e2fd052013c495699abb3ae09dadb3e2020-11-25T00:32:46ZengPrince of Songkla UniversitySongklanakarin Journal of Science and Technology (SJST)0125-33952018-02-01401939510.14456/sjst-psu.2018.4On R-left cancellative semigroupsChaiwat Namnak0Ekkachai Laysirikul1Piyaporn Tantong2Department of Mathematics, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000 ThailandDepartment of Mathematics, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000 ThailandDepartment of Mathematics, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000 ThailandSuppose R is a Green’s relation on a semigroup S and let R LC (S) = {a ∈ S : ∀x , y ∈ S, ax = ay ⇒ x R y} It is obvious that RLC(S) is a subsemigroup of S if it is nonempty. The purpose of this paper is to study some properties of RLC(S . http://rdo.psu.ac.th/sjstweb/journal/40-1/40-1-12.pdfleft cancellativeGreen’s relations
collection DOAJ
language English
format Article
sources DOAJ
author Chaiwat Namnak
Ekkachai Laysirikul
Piyaporn Tantong
spellingShingle Chaiwat Namnak
Ekkachai Laysirikul
Piyaporn Tantong
On R-left cancellative semigroups
Songklanakarin Journal of Science and Technology (SJST)
left cancellative
Green’s relations
author_facet Chaiwat Namnak
Ekkachai Laysirikul
Piyaporn Tantong
author_sort Chaiwat Namnak
title On R-left cancellative semigroups
title_short On R-left cancellative semigroups
title_full On R-left cancellative semigroups
title_fullStr On R-left cancellative semigroups
title_full_unstemmed On R-left cancellative semigroups
title_sort on r-left cancellative semigroups
publisher Prince of Songkla University
series Songklanakarin Journal of Science and Technology (SJST)
issn 0125-3395
publishDate 2018-02-01
description Suppose R is a Green’s relation on a semigroup S and let R LC (S) = {a ∈ S : ∀x , y ∈ S, ax = ay ⇒ x R y} It is obvious that RLC(S) is a subsemigroup of S if it is nonempty. The purpose of this paper is to study some properties of RLC(S .
topic left cancellative
Green’s relations
url http://rdo.psu.ac.th/sjstweb/journal/40-1/40-1-12.pdf
work_keys_str_mv AT chaiwatnamnak onrleftcancellativesemigroups
AT ekkachailaysirikul onrleftcancellativesemigroups
AT piyaporntantong onrleftcancellativesemigroups
_version_ 1725319158095151104