Prey-tracking behavior and prey preferences in a tree-climbing firefly

Prey-tracking behavior is common in snail-killing predators, but in the family Lampyridae, this behavior has been validated in only a single species even though this Coleopteran family includes many specialist snail predators. The endemic firefly Pyrocoelia atripennis is a major snail-killing predat...

Full description

Bibliographic Details
Main Author: Nozomu Sato
Format: Article
Language:English
Published: PeerJ Inc. 2019-12-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/8080.pdf
Description
Summary:Prey-tracking behavior is common in snail-killing predators, but in the family Lampyridae, this behavior has been validated in only a single species even though this Coleopteran family includes many specialist snail predators. The endemic firefly Pyrocoelia atripennis is a major snail-killing predator in the Yaeyama Islands of Japan, and the larvae often climb on the trees and grasses at night. This tree-climbing behavior is relevant to larval food choices and anti-predatory defenses of land snails. This study examined whether lampyrid larvae can track snail mucus trails and examined larval prey preferences using alternative choice experiments. In addition, predation trials were conducted to evaluate which snail species are potential prey. P. atripennis larvae significantly selected mucous trails over distilled water or control (no-trail) treatments. In addition, a semi-arboreal species was preferred over a ground-dwelling species. In predation trials, the larvae preyed on five out of 10 endemic snail species, all of which were semi-arboreal or arboreal species. Ground-dwelling Cyclophoridae and Aegista species have effective anti-predatory defenses consisting of an operculum or “foamy-lid” that fills the shell aperture. Whether the prey has a lid affects the predation success of lampyrid larvae, and larval tree-climbing behavior may be an adaptation used to search for semi-arboreal and arboreal land snails that lack defensive lids. Furthermore, snail mucus left on the plant stem may help the lampyrid larvae to locate their prey.
ISSN:2167-8359