Repulsive expansion dynamics in colony growth and gene expression.

Spatial expansion of a population of cells can arise from growth of microorganisms, plant cells, and mammalian cells. It underlies normal or dysfunctional tissue development, and it can be exploited as the foundation for programming spatial patterns. This expansion is often driven by continuous grow...

Full description

Bibliographic Details
Main Authors: Yangxiaolu Cao, John Neu, Andrew E Blanchard, Ting Lu, Lingchong You
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-03-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1008168
Description
Summary:Spatial expansion of a population of cells can arise from growth of microorganisms, plant cells, and mammalian cells. It underlies normal or dysfunctional tissue development, and it can be exploited as the foundation for programming spatial patterns. This expansion is often driven by continuous growth and division of cells within a colony, which in turn pushes the peripheral cells outward. This process generates a repulsion velocity field at each location within the colony. Here we show that this process can be approximated as coarse-grained repulsive-expansion kinetics. This framework enables accurate and efficient simulation of growth and gene expression dynamics in radially symmetric colonies with homogenous z-directional distribution. It is robust even if cells are not spherical and vary in size. The simplicity of the resulting mathematical framework also greatly facilitates generation of mechanistic insights.
ISSN:1553-734X
1553-7358