On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function

In this paper, we study the combined effect of concave and convex nonlinearities on the number of nontrivial solutions for the $p$-biharmonic equation of the form \begin{equation}\left\{ \begin{array}{l} \Delta_{p}^{2}u=\vert u\vert^{q-2}u+\lambda f(x)\vert u\vert^{r-2}u \quad\quad \text{ in}\,\,\ \...

Full description

Bibliographic Details
Main Authors: Chao Ji, Weihua Wang
Format: Article
Language:English
Published: University of Szeged 2012-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1250
id doaj-7e254625671544789e1298f02ca0b239
record_format Article
spelling doaj-7e254625671544789e1298f02ca0b2392021-07-14T07:21:23ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752012-01-012012211710.14232/ejqtde.2012.1.21250On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight functionChao Ji0Weihua Wang1East China University of Science and Technology, Shanghai, P. R. ChinaPutian University, Fujian, P. R. ChinaIn this paper, we study the combined effect of concave and convex nonlinearities on the number of nontrivial solutions for the $p$-biharmonic equation of the form \begin{equation}\left\{ \begin{array}{l} \Delta_{p}^{2}u=\vert u\vert^{q-2}u+\lambda f(x)\vert u\vert^{r-2}u \quad\quad \text{ in}\,\,\ \Omega, \\ u=\nabla u=0\quad\quad\quad\text{ on }\partial \Omega , \end{array} \right.\end{equation} where $\Omega$ is a bounded domain in $R^{N}$, $f\in C(\overline{\Omega})$ be a sign-changing weight function. By means of the Nehari manifold, we prove that there are at least two nontrivial solutions for the problem.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1250p-biharmonic equationsnehari manifoldconcave-convex nonlinearitiessign-changing weight function
collection DOAJ
language English
format Article
sources DOAJ
author Chao Ji
Weihua Wang
spellingShingle Chao Ji
Weihua Wang
On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
Electronic Journal of Qualitative Theory of Differential Equations
p-biharmonic equations
nehari manifold
concave-convex nonlinearities
sign-changing weight function
author_facet Chao Ji
Weihua Wang
author_sort Chao Ji
title On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
title_short On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
title_full On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
title_fullStr On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
title_full_unstemmed On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
title_sort on the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2012-01-01
description In this paper, we study the combined effect of concave and convex nonlinearities on the number of nontrivial solutions for the $p$-biharmonic equation of the form \begin{equation}\left\{ \begin{array}{l} \Delta_{p}^{2}u=\vert u\vert^{q-2}u+\lambda f(x)\vert u\vert^{r-2}u \quad\quad \text{ in}\,\,\ \Omega, \\ u=\nabla u=0\quad\quad\quad\text{ on }\partial \Omega , \end{array} \right.\end{equation} where $\Omega$ is a bounded domain in $R^{N}$, $f\in C(\overline{\Omega})$ be a sign-changing weight function. By means of the Nehari manifold, we prove that there are at least two nontrivial solutions for the problem.
topic p-biharmonic equations
nehari manifold
concave-convex nonlinearities
sign-changing weight function
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1250
work_keys_str_mv AT chaoji onthepbiharmonicequationinvolvingconcaveconvexnonlinearitiesandsignchangingweightfunction
AT weihuawang onthepbiharmonicequationinvolvingconcaveconvexnonlinearitiesandsignchangingweightfunction
_version_ 1721303715186475008