Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes

We study universal quantities characterizing the second order phase transition in the Gribov process. To this end, we use numerical methods for the calculation of the renormalization group functions up to two-loop order in perturbation theory in the famous ε-expansion. Within this procedure the anom...

Full description

Bibliographic Details
Main Authors: Adzhemyan Loran Ts., Hnatič Michal, Ivanova Ella, Kompaniets Mikhail V., Lučivjanský Tomáš, Mižišin Lukáš
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/02/epjconf_mmcp2019_02001.pdf
id doaj-7e1ae1a3eb7c432bae9f639b4cd52b64
record_format Article
spelling doaj-7e1ae1a3eb7c432bae9f639b4cd52b642021-08-02T01:25:45ZengEDP SciencesEPJ Web of Conferences2100-014X2020-01-012260200110.1051/epjconf/202022602001epjconf_mmcp2019_02001Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction SchemesAdzhemyan Loran Ts.Hnatič MichalIvanova EllaKompaniets Mikhail V.Lučivjanský TomášMižišin LukášWe study universal quantities characterizing the second order phase transition in the Gribov process. To this end, we use numerical methods for the calculation of the renormalization group functions up to two-loop order in perturbation theory in the famous ε-expansion. Within this procedure the anomalous dimensions are evaluated using two different subtraction schemes: the minimal subtraction scheme and the null-momentum scheme. Numerical calculation of integrals was done on the HybriLIT cluster using the Vegas algorithm from the CUBA library. The comparison with existing analytic calculations shows that the minimal subtraction scheme yields more precise results.https://www.epj-conferences.org/articles/epjconf/pdf/2020/02/epjconf_mmcp2019_02001.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Adzhemyan Loran Ts.
Hnatič Michal
Ivanova Ella
Kompaniets Mikhail V.
Lučivjanský Tomáš
Mižišin Lukáš
spellingShingle Adzhemyan Loran Ts.
Hnatič Michal
Ivanova Ella
Kompaniets Mikhail V.
Lučivjanský Tomáš
Mižišin Lukáš
Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
EPJ Web of Conferences
author_facet Adzhemyan Loran Ts.
Hnatič Michal
Ivanova Ella
Kompaniets Mikhail V.
Lučivjanský Tomáš
Mižišin Lukáš
author_sort Adzhemyan Loran Ts.
title Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
title_short Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
title_full Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
title_fullStr Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
title_full_unstemmed Renormalization Approach to the Gribov Process: Numerical Evaluation of Critical Exponents in Two Subtraction Schemes
title_sort renormalization approach to the gribov process: numerical evaluation of critical exponents in two subtraction schemes
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2020-01-01
description We study universal quantities characterizing the second order phase transition in the Gribov process. To this end, we use numerical methods for the calculation of the renormalization group functions up to two-loop order in perturbation theory in the famous ε-expansion. Within this procedure the anomalous dimensions are evaluated using two different subtraction schemes: the minimal subtraction scheme and the null-momentum scheme. Numerical calculation of integrals was done on the HybriLIT cluster using the Vegas algorithm from the CUBA library. The comparison with existing analytic calculations shows that the minimal subtraction scheme yields more precise results.
url https://www.epj-conferences.org/articles/epjconf/pdf/2020/02/epjconf_mmcp2019_02001.pdf
work_keys_str_mv AT adzhemyanlorants renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
AT hnaticmichal renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
AT ivanovaella renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
AT kompanietsmikhailv renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
AT lucivjanskytomas renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
AT mizisinlukas renormalizationapproachtothegribovprocessnumericalevaluationofcriticalexponentsintwosubtractionschemes
_version_ 1721244836581867520