Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo

In this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters coul...

Full description

Bibliographic Details
Main Authors: Carlos H.R. Moura, Bruno M. Viegas, Maria Tavares, Emanuel N. Macêdo, Diego C. Estumano, João N.N. Quaresma
Format: Article
Language:English
Published: Shahid Chamran University of Ahvaz 2021-04-01
Series:Journal of Applied and Computational Mechanics
Subjects:
Online Access:https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdf
id doaj-7e1919f1a01e4461976c082d6bc4d5f2
record_format Article
spelling doaj-7e1919f1a01e4461976c082d6bc4d5f22021-02-04T16:51:02ZengShahid Chamran University of AhvazJournal of Applied and Computational Mechanics2383-45362383-45362021-04-017289090110.22055/jacm.2021.35741.272516365Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte CarloCarlos H.R. Moura0Bruno M. Viegas1Maria Tavares2Emanuel N. Macêdo3Diego C. Estumano4João N.N. Quaresma5Graduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, Brazil‎Graduate Program in Mathematics and Statistics, Federal University of Pará, Belém, PA, BrazilGraduate Program in Mathematics and Statistics, Federal University of Pará, Belém, PA, BrazilGraduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, Brazil‎Faculty of Biotechnology and Bioprocess Engineering, Federal University of Pará, Belém, PA, BrazilGraduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, Brazil‎In this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters could be estimated simultaneously. The technique is then applied to estimate the models' parameters in different numerical scenarios to determine the rates that influence population dynamics. After the analyzes are performed, the estimates show good precision, accuracy, and a good fit between the measured and estimated state variables. The results show that the Markov chain Monte Carlo can determine the rates of population balance phenomenon.https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdfparticulate systemspopulation balancebayesian statisticsmarkov chain monte carlo‎
collection DOAJ
language English
format Article
sources DOAJ
author Carlos H.R. Moura
Bruno M. Viegas
Maria Tavares
Emanuel N. Macêdo
Diego C. Estumano
João N.N. Quaresma
spellingShingle Carlos H.R. Moura
Bruno M. Viegas
Maria Tavares
Emanuel N. Macêdo
Diego C. Estumano
João N.N. Quaresma
Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
Journal of Applied and Computational Mechanics
particulate systems
population balance
bayesian statistics
markov chain monte carlo‎
author_facet Carlos H.R. Moura
Bruno M. Viegas
Maria Tavares
Emanuel N. Macêdo
Diego C. Estumano
João N.N. Quaresma
author_sort Carlos H.R. Moura
title Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
title_short Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
title_full Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
title_fullStr Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
title_full_unstemmed Parameter Estimation in Population Balance through Bayesian ‎Technique Markov Chain Monte Carlo
title_sort parameter estimation in population balance through bayesian ‎technique markov chain monte carlo
publisher Shahid Chamran University of Ahvaz
series Journal of Applied and Computational Mechanics
issn 2383-4536
2383-4536
publishDate 2021-04-01
description In this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters could be estimated simultaneously. The technique is then applied to estimate the models' parameters in different numerical scenarios to determine the rates that influence population dynamics. After the analyzes are performed, the estimates show good precision, accuracy, and a good fit between the measured and estimated state variables. The results show that the Markov chain Monte Carlo can determine the rates of population balance phenomenon.
topic particulate systems
population balance
bayesian statistics
markov chain monte carlo‎
url https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdf
work_keys_str_mv AT carloshrmoura parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
AT brunomviegas parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
AT mariatavares parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
AT emanuelnmacedo parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
AT diegocestumano parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
AT joaonnquaresma parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo
_version_ 1724285140827373568