Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
In this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters coul...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Chamran University of Ahvaz
2021-04-01
|
Series: | Journal of Applied and Computational Mechanics |
Subjects: | |
Online Access: | https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdf |
id |
doaj-7e1919f1a01e4461976c082d6bc4d5f2 |
---|---|
record_format |
Article |
spelling |
doaj-7e1919f1a01e4461976c082d6bc4d5f22021-02-04T16:51:02ZengShahid Chamran University of AhvazJournal of Applied and Computational Mechanics2383-45362383-45362021-04-017289090110.22055/jacm.2021.35741.272516365Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte CarloCarlos H.R. Moura0Bruno M. Viegas1Maria Tavares2Emanuel N. Macêdo3Diego C. Estumano4João N.N. Quaresma5Graduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, BrazilGraduate Program in Mathematics and Statistics, Federal University of Pará, Belém, PA, BrazilGraduate Program in Mathematics and Statistics, Federal University of Pará, Belém, PA, BrazilGraduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, BrazilFaculty of Biotechnology and Bioprocess Engineering, Federal University of Pará, Belém, PA, BrazilGraduate Program in Chemical Engineering, PPGEQ/ITEC/UFPA, Federal University of Pará, 66075-110, Belém, PA, BrazilIn this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters could be estimated simultaneously. The technique is then applied to estimate the models' parameters in different numerical scenarios to determine the rates that influence population dynamics. After the analyzes are performed, the estimates show good precision, accuracy, and a good fit between the measured and estimated state variables. The results show that the Markov chain Monte Carlo can determine the rates of population balance phenomenon.https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdfparticulate systemspopulation balancebayesian statisticsmarkov chain monte carlo |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carlos H.R. Moura Bruno M. Viegas Maria Tavares Emanuel N. Macêdo Diego C. Estumano João N.N. Quaresma |
spellingShingle |
Carlos H.R. Moura Bruno M. Viegas Maria Tavares Emanuel N. Macêdo Diego C. Estumano João N.N. Quaresma Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo Journal of Applied and Computational Mechanics particulate systems population balance bayesian statistics markov chain monte carlo |
author_facet |
Carlos H.R. Moura Bruno M. Viegas Maria Tavares Emanuel N. Macêdo Diego C. Estumano João N.N. Quaresma |
author_sort |
Carlos H.R. Moura |
title |
Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo |
title_short |
Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo |
title_full |
Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo |
title_fullStr |
Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo |
title_full_unstemmed |
Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo |
title_sort |
parameter estimation in population balance through bayesian technique markov chain monte carlo |
publisher |
Shahid Chamran University of Ahvaz |
series |
Journal of Applied and Computational Mechanics |
issn |
2383-4536 2383-4536 |
publishDate |
2021-04-01 |
description |
In this work, the Markov Chain Monte Carlo is applied to estimate parameters that represent mechanisms that describe particles' dynamics in particulate systems from the literature's proposed models. Initially, the reduced sensitivity coefficient is evaluated to verify which parameters could be estimated simultaneously. The technique is then applied to estimate the models' parameters in different numerical scenarios to determine the rates that influence population dynamics. After the analyzes are performed, the estimates show good precision, accuracy, and a good fit between the measured and estimated state variables. The results show that the Markov chain Monte Carlo can determine the rates of population balance phenomenon. |
topic |
particulate systems population balance bayesian statistics markov chain monte carlo |
url |
https://jacm.scu.ac.ir/article_16365_e19748aadadd0fe8d2623a6db2eab6ee.pdf |
work_keys_str_mv |
AT carloshrmoura parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo AT brunomviegas parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo AT mariatavares parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo AT emanuelnmacedo parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo AT diegocestumano parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo AT joaonnquaresma parameterestimationinpopulationbalancethroughbayesiantechniquemarkovchainmontecarlo |
_version_ |
1724285140827373568 |