Summary: | Spectrum sensing plays an essential role in the detection of unused spectrum whole in cognitive radio networks, including cooperative spectrum sensing (CSS) and independent spectrum sensing. In cognitive radio ad hoc networks (CRAHNs), CSS enhances the sensing performance of cognitive nodes by exploring the spectrum partial homogeneity and fully utilizing the knowledge of neighboring nodes, e.g., sensing results and topological information. However, CSS may also open a door for malicious nodes, i.e., spectrum sensing data falsification (SSDF) attackers, which report fake sensing results to deteriorate the performance of CSS. Generally, the performance of CSS has an inverse relationship with the fraction of SSDF attackers. On the contrary, independent spectrum sensing is robust to SSDF attacks. Therefore, it is desirable to choose a proper sensing strategy between independent sensing and collaborative sensing for CRAHNs coexisting with various fractions of SSDF attackers. In this paper, a novel algorithm called Spectrum Sensing Strategy Selection (4S) is proposed to select better sensing strategies either in a collaborative or in an independent manner. To derive the maximum a posteriori estimation of nodes’ spectrum status, we investigated the graph cut-based CSS method, through which the topological information cost function and the sensing results cost function were constructed. Moreover, the reputation value was applied to evaluate the performance of CSS and independent sensing. The reputation threshold was theoretically analyzed to minimize the probability of choosing the sensing manner with worse performance. Simulations were carried out to verify the viability and the efficiency of the proposed algorithm.
|