Are we narrowing genetic variability in seed orchards? An attempt to answer, based on the analysis of microsatellite DNA of grafts growing in Scots pine (Pinus sylvestris L.) seed orchard in the Forest District Susz

Scots pine (Pinus sylvestris L.) is the most common species in Poland’s forest stands. The mode of pine stands renovation requires that silviculture practitioners have continuous access to seed banks. Orchard-grown seeds are predicted to constitute an increasingly larger part of the average demand f...

Full description

Bibliographic Details
Main Author: Przybylski Paweł
Format: Article
Language:English
Published: Sciendo 2015-09-01
Series:Forest Research Papers
Subjects:
Online Access:https://doi.org/10.1515/frp-2015-0023
Description
Summary:Scots pine (Pinus sylvestris L.) is the most common species in Poland’s forest stands. The mode of pine stands renovation requires that silviculture practitioners have continuous access to seed banks. Orchard-grown seeds are predicted to constitute an increasingly larger part of the average demand for pine seeds in Poland. Seed orchards, due to a limited number of maternal trees as well as the irregularity of their blooming and pollination, enhance the risk of genetic diversity reduction in planted forest stands. This is of particular importance in the context of dynamic climate change. Markers based on microsatellite DNA fragments are effective tools for monitoring genetic variability. In the present study, three different microsatellite DNA fragments were used: SPAC 12.5, SPAG 7.14 and SPAC 11.4. The main objective of this research was to study genetic variability in one of the biggest seed orchards in Poland, located in the Forest District Susz. The obtained results indicated heterozygosity loss within the orchard, proving the existence of specimen selection effects on genetic variability. Hence, it seems quite important to take account of molecular genetic variability of maternal trees in future breeding strategies.
ISSN:2082-8926