Response of Extreme Hydrological Events to Climate Change in the Water Source Area for the Middle Route of South-to-North Water Diversion Project
As the water source area for the middle route of China’s South-to-North Water Diversion Project, the upper Hanjiang basin is of central concern for future management of the country’s water resources. The upper Hanjiang is also one of the most flood-prone rivers in China. This paper explores the proc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Advances in Meteorology |
Online Access: | http://dx.doi.org/10.1155/2016/2486928 |
Summary: | As the water source area for the middle route of China’s South-to-North Water Diversion Project, the upper Hanjiang basin is of central concern for future management of the country’s water resources. The upper Hanjiang is also one of the most flood-prone rivers in China. This paper explores the process of extreme floods by using multivariate analysis to characterize flood and precipitation event data in combination, for historical data and simulated data from global climate models. The results suggested that the generalized extreme value and Gamma models better simulated the extreme precipitation and flood volume sequence than the generalized Pareto model for the annual maximum series, while the generalized Pareto distribution model was the best-fit model for peaks over threshold series. For the two-dimensional joint distributions of precipitation and flood volume, the Frank Copula was preferred in simulation of the annual maximum flood series whereas the Gumbel Copula was the most appropriate function to simulate the points over threshold flood series. We concluded that, compared with the traditional univariate approach, multivariate statistical analysis produced flood estimates that were more physically based and statistically sound and carried lower risk for flood design purposes. |
---|---|
ISSN: | 1687-9309 1687-9317 |