ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons

Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two...

Full description

Bibliographic Details
Main Authors: Sandra Harjuhaahto, Tiina S. Rasila, Svetlana M. Molchanova, Rosa Woldegebriel, Jouni Kvist, Svetlana Konovalova, Markus T. Sainio, Jana Pennonen, Rubén Torregrosa-Muñumer, Hazem Ibrahim, Timo Otonkoski, Tomi Taira, Emil Ylikallio, Henna Tyynismaa
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996120302151
Description
Summary:Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.
ISSN:1095-953X