Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary

In the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.

Bibliographic Details
Main Authors: Polina Vitalievna Vinogradova, Anatoly Georgievich Zarubin, Aleksandr Markovich Samusenko
Format: Article
Language:Russian
Published: Institute of Computer Science 2013-02-01
Series:Компьютерные исследования и моделирование
Subjects:
Online Access:http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdf
id doaj-7dbfd844dbac464a8fba0e4a6d6d9ca4
record_format Article
spelling doaj-7dbfd844dbac464a8fba0e4a6d6d9ca42020-11-24T21:55:31ZrusInstitute of Computer ScienceКомпьютерные исследования и моделирование2076-76332077-68532013-02-015131010.20537/2076-7633-2013-5-1-3-101985Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundaryPolina Vitalievna VinogradovaAnatoly Georgievich ZarubinAleksandr Markovich SamusenkoIn the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdfinitial boundary value problemparabolic equationGalerkin–Petrov methodconvergenceconvergence rate
collection DOAJ
language Russian
format Article
sources DOAJ
author Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
spellingShingle Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
Компьютерные исследования и моделирование
initial boundary value problem
parabolic equation
Galerkin–Petrov method
convergence
convergence rate
author_facet Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
author_sort Polina Vitalievna Vinogradova
title Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_short Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_full Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_fullStr Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_full_unstemmed Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_sort galerkin-petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
publisher Institute of Computer Science
series Компьютерные исследования и моделирование
issn 2076-7633
2077-6853
publishDate 2013-02-01
description In the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.
topic initial boundary value problem
parabolic equation
Galerkin–Petrov method
convergence
convergence rate
url http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdf
work_keys_str_mv AT polinavitalievnavinogradova galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary
AT anatolygeorgievichzarubin galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary
AT aleksandrmarkovichsamusenko galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary
_version_ 1725862175782731776