A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens

We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdisperse...

Full description

Bibliographic Details
Main Authors: EDUARDO DÁVILA, LUIS ALBERTO LÓPEZ, LUIS GUILLERMO DÍAZ
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2012-06-01
Series:Revista Colombiana de Estadística
Subjects:
Online Access:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=en
id doaj-7dbd1b968a924ba98b011706c7945961
record_format Article
spelling doaj-7dbd1b968a924ba98b011706c79459612020-11-25T03:07:37ZengUniversidad Nacional de Colombia Revista Colombiana de Estadística0120-17512012-06-0135spe2255270S0120-17512012000200005A Statistical Model for Analyzing Interdependent Complex of Plant PathogensEDUARDO DÁVILA0LUIS ALBERTO LÓPEZ1LUIS GUILLERMO DÍAZ2Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaWe introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdispersed data. We illustrate this approach using fungal incidence in vegetables, which we analyzed using Gaussian copula with Beta-binomial margins. Compared to classical and generalized linear models, the model using Gaussian copula function best controls for overdispersion, being less prone to the underestimation of standard errors, the major cause of wrong inference in the statistical analysis of plant pathogen complex.http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=enEpidemiological methodsExtra-binomial variationMultivariate data
collection DOAJ
language English
format Article
sources DOAJ
author EDUARDO DÁVILA
LUIS ALBERTO LÓPEZ
LUIS GUILLERMO DÍAZ
spellingShingle EDUARDO DÁVILA
LUIS ALBERTO LÓPEZ
LUIS GUILLERMO DÍAZ
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
Revista Colombiana de Estadística
Epidemiological methods
Extra-binomial variation
Multivariate data
author_facet EDUARDO DÁVILA
LUIS ALBERTO LÓPEZ
LUIS GUILLERMO DÍAZ
author_sort EDUARDO DÁVILA
title A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
title_short A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
title_full A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
title_fullStr A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
title_full_unstemmed A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
title_sort statistical model for analyzing interdependent complex of plant pathogens
publisher Universidad Nacional de Colombia
series Revista Colombiana de Estadística
issn 0120-1751
publishDate 2012-06-01
description We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdispersed data. We illustrate this approach using fungal incidence in vegetables, which we analyzed using Gaussian copula with Beta-binomial margins. Compared to classical and generalized linear models, the model using Gaussian copula function best controls for overdispersion, being less prone to the underestimation of standard errors, the major cause of wrong inference in the statistical analysis of plant pathogen complex.
topic Epidemiological methods
Extra-binomial variation
Multivariate data
url http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=en
work_keys_str_mv AT eduardodavila astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens
AT luisalbertolopez astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens
AT luisguillermodiaz astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens
AT eduardodavila statisticalmodelforanalyzinginterdependentcomplexofplantpathogens
AT luisalbertolopez statisticalmodelforanalyzinginterdependentcomplexofplantpathogens
AT luisguillermodiaz statisticalmodelforanalyzinginterdependentcomplexofplantpathogens
_version_ 1724669389844774912