A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens
We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdisperse...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Nacional de Colombia
2012-06-01
|
Series: | Revista Colombiana de Estadística |
Subjects: | |
Online Access: | http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=en |
id |
doaj-7dbd1b968a924ba98b011706c7945961 |
---|---|
record_format |
Article |
spelling |
doaj-7dbd1b968a924ba98b011706c79459612020-11-25T03:07:37ZengUniversidad Nacional de Colombia Revista Colombiana de Estadística0120-17512012-06-0135spe2255270S0120-17512012000200005A Statistical Model for Analyzing Interdependent Complex of Plant PathogensEDUARDO DÁVILA0LUIS ALBERTO LÓPEZ1LUIS GUILLERMO DÍAZ2Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaWe introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdispersed data. We illustrate this approach using fungal incidence in vegetables, which we analyzed using Gaussian copula with Beta-binomial margins. Compared to classical and generalized linear models, the model using Gaussian copula function best controls for overdispersion, being less prone to the underestimation of standard errors, the major cause of wrong inference in the statistical analysis of plant pathogen complex.http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=enEpidemiological methodsExtra-binomial variationMultivariate data |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
EDUARDO DÁVILA LUIS ALBERTO LÓPEZ LUIS GUILLERMO DÍAZ |
spellingShingle |
EDUARDO DÁVILA LUIS ALBERTO LÓPEZ LUIS GUILLERMO DÍAZ A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens Revista Colombiana de Estadística Epidemiological methods Extra-binomial variation Multivariate data |
author_facet |
EDUARDO DÁVILA LUIS ALBERTO LÓPEZ LUIS GUILLERMO DÍAZ |
author_sort |
EDUARDO DÁVILA |
title |
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens |
title_short |
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens |
title_full |
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens |
title_fullStr |
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens |
title_full_unstemmed |
A Statistical Model for Analyzing Interdependent Complex of Plant Pathogens |
title_sort |
statistical model for analyzing interdependent complex of plant pathogens |
publisher |
Universidad Nacional de Colombia |
series |
Revista Colombiana de Estadística |
issn |
0120-1751 |
publishDate |
2012-06-01 |
description |
We introduce a new approach for modeling multivariate overdispersed binomial data, from a plant pathogen complex. After recalling some theoretical foundations of generalized linear models (GLMs) and Copula functions, we show how the later can be used to model correlated observations and overdispersed data. We illustrate this approach using fungal incidence in vegetables, which we analyzed using Gaussian copula with Beta-binomial margins. Compared to classical and generalized linear models, the model using Gaussian copula function best controls for overdispersion, being less prone to the underestimation of standard errors, the major cause of wrong inference in the statistical analysis of plant pathogen complex. |
topic |
Epidemiological methods Extra-binomial variation Multivariate data |
url |
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-17512012000200005&lng=en&tlng=en |
work_keys_str_mv |
AT eduardodavila astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens AT luisalbertolopez astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens AT luisguillermodiaz astatisticalmodelforanalyzinginterdependentcomplexofplantpathogens AT eduardodavila statisticalmodelforanalyzinginterdependentcomplexofplantpathogens AT luisalbertolopez statisticalmodelforanalyzinginterdependentcomplexofplantpathogens AT luisguillermodiaz statisticalmodelforanalyzinginterdependentcomplexofplantpathogens |
_version_ |
1724669389844774912 |