Summary: | In this article, we have presented a mathematical model to study the dynamics of hepatitis C virus (HCV) disease considering three populations namely the uninfected liver cells, infected liver cells, and HCV with the aim to control the disease. The model possesses two equilibria namely the disease-free steady state and the endemically infected state. There exists a threshold condition (basic reproduction number) that determines the stability of the disease-free equilibrium and the number of the endemic states. We have further introduced impulsive periodic therapy using DAA into the system and studied the efficacy of the DAA therapy for hepatitis C infected patients in terms of a threshold condition. Finally, impulse periodic dosing with varied rate and time interval is adopted for cost effective disease control for finding the proper dose and dosing interval for the control of HCV disease.
|