Modelling the water mass exchange through navigational channels connecting adjacent coastal basins - application to the Channel of Potidea (North Aegean Sea)

The research objective is the detection of the mechanism of the water mass exchange through a navigational channel connecting two adjacent coastal basins. The research involves the application of a mathematical model in parallel to in-situ measurements. The hydrodynamic circulation in the greate...

Full description

Bibliographic Details
Main Authors: Y. G. Savvidis, C. G. Koutitas, Y. N. Krestenitis
Format: Article
Language:English
Published: Copernicus Publications 2005-02-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/23/231/2005/angeo-23-231-2005.pdf
Description
Summary:The research objective is the detection of the mechanism of the water mass exchange through a navigational channel connecting two adjacent coastal basins. The research involves the application of a mathematical model in parallel to in-situ measurements. The hydrodynamic circulation in the greater area of the NW Aegean Sea is modeled by means of a barotropic circulation model. Wind, Coriolis and Tide are the main forcings taken into account. The flow through the channel is resolved at a subgrid scale by means of a local open channel flow model. The comparison between field measurements, recorded during a limited period, and the model results supports the model verification. The study is integrated by an operational application of the model under various realistic forcings. The results help to gain a better understanding of the mechanisms regulating the water mass exchange and the consequent interaction between two adjacent connected coastal basins. From the case study of the Potidea channel it is revealed that the water mass exchange under mean wind forcing is of the same order as the one induced by the tidal forcing.
ISSN:0992-7689
1432-0576