Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers
Wind-induced damage during the construction process and the evolution of damage over time are important reasons for the wind-induced destruction of large cooling towers. In fact, wind vibration coefficient and stability performance will evolve with the construction height and material properties ove...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/20/4202 |
id |
doaj-7d8f7c529aaf4051ac34746e28d5d575 |
---|---|
record_format |
Article |
spelling |
doaj-7d8f7c529aaf4051ac34746e28d5d5752020-11-25T01:32:42ZengMDPI AGApplied Sciences2076-34172019-10-01920420210.3390/app9204202app9204202Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling TowersShitang Ke0Peng Zhu1Lu Xu2Yaojun Ge3Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, ChinaChina Information Consulting & Designing Institute Co., LTD, Nanjing 210000, ChinaChina Energy Engineering Group Guangdong Electric Power Design Institute Co., LTD, Guangzhou 510663, ChinaState Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, ChinaWind-induced damage during the construction process and the evolution of damage over time are important reasons for the wind-induced destruction of large cooling towers. In fact, wind vibration coefficient and stability performance will evolve with the construction height and material properties over time. However, the existing studies generally ignore the impact of wind load and structural performance during the construction period. In this study, we built the 3D physical model separately for all eight construction stages a super large cooling tower which is being currently constructed and stands 210 m. The dynamic characteristics of the cooling tower were analyzed in each stage. First, the flow field information and 3D time history of aerodynamic forces were obtained for the whole construction process using large eddy simulation (LES). Full transient dynamic finite element analysis was used to calculate the dynamic responses of the tower under the real-time changes of wind loads during the whole construction process. Five calculation methods were used to trace the evolution of wind vibration coefficient during the whole construction process of the super large cooling tower. Then the formula for wind vibration coefficient changing with the construction height was fitted. The differential values of wind vibration coefficient during the whole construction process of the cooling tower were discussed by taking the meridional axial force as the objective function. On this basis, the influence and working mechanism of wind vibration coefficient, concrete age, construction load, geometric nonlinearity, internal suction force on buckling stability, and ultimate bearing capacity of the cooling towers were investigated. This research provides an enhanced understanding on the evolution of wind-induced stability performance in super large cooling towers and a methodology to prevent wind-induced damage during the construction process.https://www.mdpi.com/2076-3417/9/20/4202super large cooling towerwhole construction processwind vibration coefficientbuckling stabilityultimate bearing capacity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shitang Ke Peng Zhu Lu Xu Yaojun Ge |
spellingShingle |
Shitang Ke Peng Zhu Lu Xu Yaojun Ge Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers Applied Sciences super large cooling tower whole construction process wind vibration coefficient buckling stability ultimate bearing capacity |
author_facet |
Shitang Ke Peng Zhu Lu Xu Yaojun Ge |
author_sort |
Shitang Ke |
title |
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers |
title_short |
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers |
title_full |
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers |
title_fullStr |
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers |
title_full_unstemmed |
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers |
title_sort |
evolution mechanism of wind vibration coefficient and stability performance during the whole construction process for super large cooling towers |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2019-10-01 |
description |
Wind-induced damage during the construction process and the evolution of damage over time are important reasons for the wind-induced destruction of large cooling towers. In fact, wind vibration coefficient and stability performance will evolve with the construction height and material properties over time. However, the existing studies generally ignore the impact of wind load and structural performance during the construction period. In this study, we built the 3D physical model separately for all eight construction stages a super large cooling tower which is being currently constructed and stands 210 m. The dynamic characteristics of the cooling tower were analyzed in each stage. First, the flow field information and 3D time history of aerodynamic forces were obtained for the whole construction process using large eddy simulation (LES). Full transient dynamic finite element analysis was used to calculate the dynamic responses of the tower under the real-time changes of wind loads during the whole construction process. Five calculation methods were used to trace the evolution of wind vibration coefficient during the whole construction process of the super large cooling tower. Then the formula for wind vibration coefficient changing with the construction height was fitted. The differential values of wind vibration coefficient during the whole construction process of the cooling tower were discussed by taking the meridional axial force as the objective function. On this basis, the influence and working mechanism of wind vibration coefficient, concrete age, construction load, geometric nonlinearity, internal suction force on buckling stability, and ultimate bearing capacity of the cooling towers were investigated. This research provides an enhanced understanding on the evolution of wind-induced stability performance in super large cooling towers and a methodology to prevent wind-induced damage during the construction process. |
topic |
super large cooling tower whole construction process wind vibration coefficient buckling stability ultimate bearing capacity |
url |
https://www.mdpi.com/2076-3417/9/20/4202 |
work_keys_str_mv |
AT shitangke evolutionmechanismofwindvibrationcoefficientandstabilityperformanceduringthewholeconstructionprocessforsuperlargecoolingtowers AT pengzhu evolutionmechanismofwindvibrationcoefficientandstabilityperformanceduringthewholeconstructionprocessforsuperlargecoolingtowers AT luxu evolutionmechanismofwindvibrationcoefficientandstabilityperformanceduringthewholeconstructionprocessforsuperlargecoolingtowers AT yaojunge evolutionmechanismofwindvibrationcoefficientandstabilityperformanceduringthewholeconstructionprocessforsuperlargecoolingtowers |
_version_ |
1725080385654620160 |