Summary: | Anomaly detection algorithms (ADA) have been widely used as services in many maintenance monitoring platforms. However, there are numerous algorithms that could be applied to these fast changing stream data. Furthermore, in IoT stream data due to its dynamic nature, the phenomena of conception drift happened. Therefore, it is a challenging task to choose a suitable anomaly detection service (ADS) in real time. For accurate online anomalous data detection, this paper developed a service selection method to select and configure ADS at run-time. Initially, a time-series feature extractor (Tsfresh) and a genetic algorithm-based feature selection method are applied to swiftly extract dominant features which act as representation for the stream data patterns. Additionally, stream data and various efficient algorithms are collected as our historical data. A fast classification model based on XGBoost is trained to record stream data features to detect appropriate ADS dynamically at run-time. These methods help to choose suitable service and their respective configuration based on the patterns of stream data. The features used to describe and reflect time-series data’s intrinsic characteristics are the main success factor in our framework. Consequently, experiments are conducted to evaluate the effectiveness of features closed by genetic algorithm. Experimentations on both artificial and real datasets demonstrate that the accuracy of our proposed method outperforms various advanced approaches and can choose appropriate service in different scenarios efficiently.
|