Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-09-01
|
Series: | Communications Materials |
Online Access: | https://doi.org/10.1038/s43246-021-00188-1 |
id |
doaj-7d4d7877ccbf48aa9043f85191147eca |
---|---|
record_format |
Article |
spelling |
doaj-7d4d7877ccbf48aa9043f85191147eca2021-09-05T11:25:11ZengNature Publishing GroupCommunications Materials2662-44432021-09-01211910.1038/s43246-021-00188-1Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growthThomas Martynec0Christos Karapanagiotis1Sabine H. L. Klapp2Stefan Kowarik3Institut für Theoretische Physik, Technische Universität BerlinBundesanstalt für Materialforschung und -prüfung (BAM)Institut für Theoretische Physik, Technische Universität BerlinUniversität Graz, Institut für Chemie, NAWI Graz, Physikalische und Theoretische ChemieExperiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined.https://doi.org/10.1038/s43246-021-00188-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik |
spellingShingle |
Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth Communications Materials |
author_facet |
Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik |
author_sort |
Thomas Martynec |
title |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_short |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_full |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_fullStr |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_full_unstemmed |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_sort |
machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
publisher |
Nature Publishing Group |
series |
Communications Materials |
issn |
2662-4443 |
publishDate |
2021-09-01 |
description |
Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined. |
url |
https://doi.org/10.1038/s43246-021-00188-1 |
work_keys_str_mv |
AT thomasmartynec machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT christoskarapanagiotis machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT sabinehlklapp machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT stefankowarik machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth |
_version_ |
1717814255761227776 |