Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology

Abstract Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as‐yet‐unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detect...

Full description

Bibliographic Details
Main Authors: Masayuki Ide, Tetsuo Ohnishi, Manabu Toyoshima, Shabeesh Balan, Motoko Maekawa, Chie Shimamoto‐Mitsuyama, Yoshimi Iwayama, Hisako Ohba, Akiko Watanabe, Takashi Ishii, Norihiro Shibuya, Yuka Kimura, Yasuko Hisano, Yui Murata, Tomonori Hara, Momo Morikawa, Kenji Hashimoto, Yayoi Nozaki, Tomoko Toyota, Yuina Wada, Yosuke Tanaka, Tadafumi Kato, Akinori Nishi, Shigeyoshi Fujisawa, Hideyuki Okano, Masanari Itokawa, Nobutaka Hirokawa, Yasuto Kunii, Akiyoshi Kakita, Hirooki Yabe, Kazuya Iwamoto, Kohji Meno, Takuya Katagiri, Brian Dean, Kazuhiko Uchida, Hideo Kimura, Takeo Yoshikawa
Format: Article
Language:English
Published: Wiley 2019-12-01
Series:EMBO Molecular Medicine
Subjects:
Online Access:https://doi.org/10.15252/emmm.201910695
id doaj-7d421ed9c97e4545be1c2101a84acaa4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Masayuki Ide
Tetsuo Ohnishi
Manabu Toyoshima
Shabeesh Balan
Motoko Maekawa
Chie Shimamoto‐Mitsuyama
Yoshimi Iwayama
Hisako Ohba
Akiko Watanabe
Takashi Ishii
Norihiro Shibuya
Yuka Kimura
Yasuko Hisano
Yui Murata
Tomonori Hara
Momo Morikawa
Kenji Hashimoto
Yayoi Nozaki
Tomoko Toyota
Yuina Wada
Yosuke Tanaka
Tadafumi Kato
Akinori Nishi
Shigeyoshi Fujisawa
Hideyuki Okano
Masanari Itokawa
Nobutaka Hirokawa
Yasuto Kunii
Akiyoshi Kakita
Hirooki Yabe
Kazuya Iwamoto
Kohji Meno
Takuya Katagiri
Brian Dean
Kazuhiko Uchida
Hideo Kimura
Takeo Yoshikawa
spellingShingle Masayuki Ide
Tetsuo Ohnishi
Manabu Toyoshima
Shabeesh Balan
Motoko Maekawa
Chie Shimamoto‐Mitsuyama
Yoshimi Iwayama
Hisako Ohba
Akiko Watanabe
Takashi Ishii
Norihiro Shibuya
Yuka Kimura
Yasuko Hisano
Yui Murata
Tomonori Hara
Momo Morikawa
Kenji Hashimoto
Yayoi Nozaki
Tomoko Toyota
Yuina Wada
Yosuke Tanaka
Tadafumi Kato
Akinori Nishi
Shigeyoshi Fujisawa
Hideyuki Okano
Masanari Itokawa
Nobutaka Hirokawa
Yasuto Kunii
Akiyoshi Kakita
Hirooki Yabe
Kazuya Iwamoto
Kohji Meno
Takuya Katagiri
Brian Dean
Kazuhiko Uchida
Hideo Kimura
Takeo Yoshikawa
Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
EMBO Molecular Medicine
energy metabolism
epigenetics
hydrogen sulfide and polysulfides
prepulse inhibition
proteomics
author_facet Masayuki Ide
Tetsuo Ohnishi
Manabu Toyoshima
Shabeesh Balan
Motoko Maekawa
Chie Shimamoto‐Mitsuyama
Yoshimi Iwayama
Hisako Ohba
Akiko Watanabe
Takashi Ishii
Norihiro Shibuya
Yuka Kimura
Yasuko Hisano
Yui Murata
Tomonori Hara
Momo Morikawa
Kenji Hashimoto
Yayoi Nozaki
Tomoko Toyota
Yuina Wada
Yosuke Tanaka
Tadafumi Kato
Akinori Nishi
Shigeyoshi Fujisawa
Hideyuki Okano
Masanari Itokawa
Nobutaka Hirokawa
Yasuto Kunii
Akiyoshi Kakita
Hirooki Yabe
Kazuya Iwamoto
Kohji Meno
Takuya Katagiri
Brian Dean
Kazuhiko Uchida
Hideo Kimura
Takeo Yoshikawa
author_sort Masayuki Ide
title Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
title_short Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
title_full Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
title_fullStr Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
title_full_unstemmed Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
title_sort excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology
publisher Wiley
series EMBO Molecular Medicine
issn 1757-4676
1757-4684
publishDate 2019-12-01
description Abstract Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as‐yet‐unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2S)/polysulfide‐producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst‐deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst‐transgenic (Tg) mice showed deteriorated PPI, suggesting that “sulfide stress” may be linked to PPI impairment. Analysis of human samples demonstrated that the H2S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst‐Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2S/polysulfides production.
topic energy metabolism
epigenetics
hydrogen sulfide and polysulfides
prepulse inhibition
proteomics
url https://doi.org/10.15252/emmm.201910695
work_keys_str_mv AT masayukiide excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT tetsuoohnishi excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT manabutoyoshima excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT shabeeshbalan excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT motokomaekawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT chieshimamotomitsuyama excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yoshimiiwayama excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT hisakoohba excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT akikowatanabe excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT takashiishii excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT norihiroshibuya excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yukakimura excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yasukohisano excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yuimurata excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT tomonorihara excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT momomorikawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT kenjihashimoto excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yayoinozaki excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT tomokotoyota excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yuinawada excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yosuketanaka excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT tadafumikato excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT akinorinishi excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT shigeyoshifujisawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT hideyukiokano excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT masanariitokawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT nobutakahirokawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT yasutokunii excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT akiyoshikakita excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT hirookiyabe excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT kazuyaiwamoto excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT kohjimeno excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT takuyakatagiri excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT briandean excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT kazuhikouchida excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT hideokimura excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
AT takeoyoshikawa excesshydrogensulfideandpolysulfidesproductionunderliesaschizophreniapathophysiology
_version_ 1721234335858688000
spelling doaj-7d421ed9c97e4545be1c2101a84acaa42021-08-02T09:56:33ZengWileyEMBO Molecular Medicine1757-46761757-46842019-12-011112n/an/a10.15252/emmm.201910695Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiologyMasayuki Ide0Tetsuo Ohnishi1Manabu Toyoshima2Shabeesh Balan3Motoko Maekawa4Chie Shimamoto‐Mitsuyama5Yoshimi Iwayama6Hisako Ohba7Akiko Watanabe8Takashi Ishii9Norihiro Shibuya10Yuka Kimura11Yasuko Hisano12Yui Murata13Tomonori Hara14Momo Morikawa15Kenji Hashimoto16Yayoi Nozaki17Tomoko Toyota18Yuina Wada19Yosuke Tanaka20Tadafumi Kato21Akinori Nishi22Shigeyoshi Fujisawa23Hideyuki Okano24Masanari Itokawa25Nobutaka Hirokawa26Yasuto Kunii27Akiyoshi Kakita28Hirooki Yabe29Kazuya Iwamoto30Kohji Meno31Takuya Katagiri32Brian Dean33Kazuhiko Uchida34Hideo Kimura35Takeo Yoshikawa36Laboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanResearch& Development Department MCBI Inc Tsukuba Ibaraki JapanDepartment of Pharmacology Sanyo‐Onoda City University Sanyo‐Onoda Yamaguchi JapanDepartment of Pharmacology Sanyo‐Onoda City University Sanyo‐Onoda Yamaguchi JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanDepartment of Molecular Brain Science Graduate School of Medical Sciences Kumamoto University Kumamoto JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanDepartment of Cell Biology and Anatomy Graduate School of Medicine The University of Tokyo Tokyo JapanDivision of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanDepartment of Cell Biology and Anatomy Graduate School of Medicine The University of Tokyo Tokyo JapanLaboratory for Molecular Dynamics of Mental Disorders RIKEN Center for Brain Science Wako Saitama JapanDepartment of Pharmacology Kurume University School of Medicine Kurume Fukuoka JapanLaboratory for Systems Neurophysiology RIKEN Center for Brain Science Wako Saitama JapanDepartment of Physiology Keio University School of Medicine Tokyo JapanCenter for Medical Cooperation Tokyo Metropolitan Institute of Medical Science Tokyo JapanDepartment of Cell Biology and Anatomy Graduate School of Medicine The University of Tokyo Tokyo JapanDepartment of Neuropsychiatry School of Medicine Fukushima Medical University Fukushima JapanDepartment of Pathology Brain Research Institute Niigata University Niigata JapanDepartment of Neuropsychiatry School of Medicine Fukushima Medical University Fukushima JapanDepartment of Molecular Brain Science Graduate School of Medical Sciences Kumamoto University Kumamoto JapanResearch& Development Department MCBI Inc Tsukuba Ibaraki JapanDepartment of Pharmacy Faculty of Pharmacy Iryo Sosei University Iwaki Fukushima JapanThe Florey Institute of Neuroscience and Mental Health Howard Florey Laboratories The University of Melbourne Parkville Vic. AustraliaDepartment of Molecular Oncology Division of Biomedical Science Faculty of Medicine University of Tsukuba Tsukuba Ibaraki JapanDepartment of Pharmacology Sanyo‐Onoda City University Sanyo‐Onoda Yamaguchi JapanLaboratory of Molecular Psychiatry RIKEN Center for Brain Science Wako Saitama JapanAbstract Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as‐yet‐unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2S)/polysulfide‐producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst‐deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst‐transgenic (Tg) mice showed deteriorated PPI, suggesting that “sulfide stress” may be linked to PPI impairment. Analysis of human samples demonstrated that the H2S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst‐Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2S/polysulfides production.https://doi.org/10.15252/emmm.201910695energy metabolismepigeneticshydrogen sulfide and polysulfidesprepulse inhibitionproteomics