DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment
Abstract Background Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein sequences are accumulating to an increasing deg...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-01-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12859-019-3190-x |