Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method

In the present work, an improved double-distribution-function thermal lattice Boltzmann method (LBM) is developed for analyzing the effect of viscous heat dissipation and compression work on microscale Rayleigh–Bénard convection. In the proposed method a temperature change is introduced into the LB...

Full description

Bibliographic Details
Main Authors: X Ren, F Liu, S Wang, S Wei
Format: Article
Language:English
Published: Multi-Science Publishing 2018-06-01
Series:International Journal of Multiphysics
Online Access:http://journal.multiphysics.org/index.php/IJM/article/view/380
id doaj-7d2e67900f394886a4e0e2327bfb68be
record_format Article
spelling doaj-7d2e67900f394886a4e0e2327bfb68be2020-11-25T03:14:24ZengMulti-Science PublishingInternational Journal of Multiphysics1750-95482048-39612018-06-0112210.21152/1750-9548.12.2.101357Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann MethodX Ren0F Liu1S Wang2S Wei3School of Control Science and Engineering, Shandong University, ChinaSchool of Control Science and Engineering, Shandong University, ChinaSchool of Civil Engineering, Shandong University, ChinaSchool of Control Science and Engineering, Shandong University,ChinaIn the present work, an improved double-distribution-function thermal lattice Boltzmann method (LBM) is developed for analyzing the effect of viscous heat dissipation and compression work on microscale Rayleigh–Bénard convection. In the proposed method a temperature change is introduced into the LB momentum equation in the form of a momentum source to realize the coupling between the momentum and the energy fields; two sets of evolution equations are established, one for the mass and momentum conservation and the other for the total energy that incorporates viscous heat dissipation and compression work. Numerical results show that the effect of viscous heat dissipation and compression work on the temperature distribution, flow distribution, and average Nusselt number at some Rayleigh numbers and aspect ratios is significant.http://journal.multiphysics.org/index.php/IJM/article/view/380
collection DOAJ
language English
format Article
sources DOAJ
author X Ren
F Liu
S Wang
S Wei
spellingShingle X Ren
F Liu
S Wang
S Wei
Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
International Journal of Multiphysics
author_facet X Ren
F Liu
S Wang
S Wei
author_sort X Ren
title Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
title_short Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
title_full Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
title_fullStr Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
title_full_unstemmed Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
title_sort numerical study of the effect of viscous heat dissipation and compression work on microscale rayleigh–bénard convection based on a coupled thermal lattice boltzmann method
publisher Multi-Science Publishing
series International Journal of Multiphysics
issn 1750-9548
2048-3961
publishDate 2018-06-01
description In the present work, an improved double-distribution-function thermal lattice Boltzmann method (LBM) is developed for analyzing the effect of viscous heat dissipation and compression work on microscale Rayleigh–Bénard convection. In the proposed method a temperature change is introduced into the LB momentum equation in the form of a momentum source to realize the coupling between the momentum and the energy fields; two sets of evolution equations are established, one for the mass and momentum conservation and the other for the total energy that incorporates viscous heat dissipation and compression work. Numerical results show that the effect of viscous heat dissipation and compression work on the temperature distribution, flow distribution, and average Nusselt number at some Rayleigh numbers and aspect ratios is significant.
url http://journal.multiphysics.org/index.php/IJM/article/view/380
work_keys_str_mv AT xren numericalstudyoftheeffectofviscousheatdissipationandcompressionworkonmicroscalerayleighbenardconvectionbasedonacoupledthermallatticeboltzmannmethod
AT fliu numericalstudyoftheeffectofviscousheatdissipationandcompressionworkonmicroscalerayleighbenardconvectionbasedonacoupledthermallatticeboltzmannmethod
AT swang numericalstudyoftheeffectofviscousheatdissipationandcompressionworkonmicroscalerayleighbenardconvectionbasedonacoupledthermallatticeboltzmannmethod
AT swei numericalstudyoftheeffectofviscousheatdissipationandcompressionworkonmicroscalerayleighbenardconvectionbasedonacoupledthermallatticeboltzmannmethod
_version_ 1724642662966886400