Rapid assessment of the impact of microwave heating coupled with UV-C radiation on the degradation of PAHs from contaminated soil using FTIR and multivariate analysis

The presence and fate of polyaromatic hydrocarbons (PAHs) in the environment are receiving a great concern. In this study, three oil-contaminated soils (industrial area, Dukhan city, and artificial soils) were utilized to examine the effect of microwave (MW) heating and UV-C irradiation on the PAHs...

Full description

Bibliographic Details
Main Authors: Haneen I. Eldos, Mohammad Y. Ashfaq, Mohammad A. Al-Ghouti
Format: Article
Language:English
Published: Elsevier 2020-11-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220303221
Description
Summary:The presence and fate of polyaromatic hydrocarbons (PAHs) in the environment are receiving a great concern. In this study, three oil-contaminated soils (industrial area, Dukhan city, and artificial soils) were utilized to examine the effect of microwave (MW) heating and UV-C irradiation on the PAHs degradation. A rapid assessment of the impact was evaluated using Fourier transform infrared (FTIR) and multivariate analysis. The total organic matter values for the maximum PAHs reduction were evaluated based on the FTIR spectra of the contaminated soils followed with the principal component analysis (PCA). The results showed that the highest total organic carbon reduction was achieved for the industrial soil sample that required a high MW power and long MW exposure time. On the other hand, the Dukhan city soil sample, which has the lowest total organic carbon, required a high MW power and short MW exposure time followed by UV-C treatment for 20 min to reach the maximal FTIR transmittance reduction. The cluster analysis was also used to evaluate the impact of MW heating, and MW heating followed by UV-C irradiation on the degradation of PAHs. The PCA results of the industrial city sample showed that neither MW treatment (100% MW, 15 min exposure time) followed by UV-C treatment for 20 min nor 10 min is significantly different from the MW treatment (100% MW, 15 min exposure time). However, for the Dukhan sample, the UV-C treatment at 10 min after high MW power and long exposure time (100% MW, 15 min exposure time) was the most efficient treatment.
ISSN:1878-5352