Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters
To improve the efficient and precise seeding of potatoes, a novel combination vacuum and spoon belt metering device was designed. The overall structure and working principle of vacuum and spoon belt metering devices were illustrated and analyzed. The stress of the potato seed situated on the vacuum...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/1504642 |
id |
doaj-7d0b7480827942938d260f2eeb411a07 |
---|---|
record_format |
Article |
spelling |
doaj-7d0b7480827942938d260f2eeb411a072020-11-25T02:49:21ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472020-01-01202010.1155/2020/15046421504642Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato PlantersZhang Wanzhi0Liu Chenglong1Lü Zhaoqin2Qi Xieteng3Lü Haoyu4Hou Jialin5College of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaCollege of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaCollege of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaCollege of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaCollege of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaCollege of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai’an 271018, ChinaTo improve the efficient and precise seeding of potatoes, a novel combination vacuum and spoon belt metering device was designed. The overall structure and working principle of vacuum and spoon belt metering devices were illustrated and analyzed. The stress of the potato seed situated on the vacuum and spoon belt metering device was analyzed theoretically. The structure and parameters of the key parts of the seed metering device were studied and calculated. Three-factor and three-level response surface experiments were designed based on the Box–Behnken central composite experimental design principle. After selecting seeding speed, spoon aperture, and cleaning-seed air amount as the experimental factors and selecting missing seed index, multiple seed index, and qualified seed index as the experimental indexes, the performance of the seed metering device with high efficiency and precision was verified by the experiments. The mathematical model of the response surface was established, and the influence of each factor on the performance of the seed metering device was analyzed using Design-Expert 10.0.4 software. To improve the efficient and precise seeding of potatoes, the three experimental factors were optimized. Experimental results show that the order of the factors affecting the missing seed index was seeding belt speed > cleaning air pressure > spoon aperture; the order of the factors affecting the multiple seed index was spoon aperture > cleaning air pressure > seeding belt speed; the order of the factors affecting the qualified seed index was seeding belt speed > cleaning air pressure > spoon aperture; when the seeding belt speed was 0.43 m·s−1, the spoon aperture was 15.72 mm, and the cleaning air pressure was 2.94 kPa, the experiment had realized potato’s highly efficient and precise seeding and the missing seed index was 3.97%, the multiple seed index was 4.65%, and the qualified seed index was 91.38%. This paper can provide a theoretical and technical reference for improving the efficient and precise seeding of potatoes.http://dx.doi.org/10.1155/2020/1504642 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhang Wanzhi Liu Chenglong Lü Zhaoqin Qi Xieteng Lü Haoyu Hou Jialin |
spellingShingle |
Zhang Wanzhi Liu Chenglong Lü Zhaoqin Qi Xieteng Lü Haoyu Hou Jialin Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters Mathematical Problems in Engineering |
author_facet |
Zhang Wanzhi Liu Chenglong Lü Zhaoqin Qi Xieteng Lü Haoyu Hou Jialin |
author_sort |
Zhang Wanzhi |
title |
Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters |
title_short |
Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters |
title_full |
Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters |
title_fullStr |
Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters |
title_full_unstemmed |
Optimized Design and Experiment on Novel Combination Vacuum and Spoon Belt Metering Device for Potato Planters |
title_sort |
optimized design and experiment on novel combination vacuum and spoon belt metering device for potato planters |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2020-01-01 |
description |
To improve the efficient and precise seeding of potatoes, a novel combination vacuum and spoon belt metering device was designed. The overall structure and working principle of vacuum and spoon belt metering devices were illustrated and analyzed. The stress of the potato seed situated on the vacuum and spoon belt metering device was analyzed theoretically. The structure and parameters of the key parts of the seed metering device were studied and calculated. Three-factor and three-level response surface experiments were designed based on the Box–Behnken central composite experimental design principle. After selecting seeding speed, spoon aperture, and cleaning-seed air amount as the experimental factors and selecting missing seed index, multiple seed index, and qualified seed index as the experimental indexes, the performance of the seed metering device with high efficiency and precision was verified by the experiments. The mathematical model of the response surface was established, and the influence of each factor on the performance of the seed metering device was analyzed using Design-Expert 10.0.4 software. To improve the efficient and precise seeding of potatoes, the three experimental factors were optimized. Experimental results show that the order of the factors affecting the missing seed index was seeding belt speed > cleaning air pressure > spoon aperture; the order of the factors affecting the multiple seed index was spoon aperture > cleaning air pressure > seeding belt speed; the order of the factors affecting the qualified seed index was seeding belt speed > cleaning air pressure > spoon aperture; when the seeding belt speed was 0.43 m·s−1, the spoon aperture was 15.72 mm, and the cleaning air pressure was 2.94 kPa, the experiment had realized potato’s highly efficient and precise seeding and the missing seed index was 3.97%, the multiple seed index was 4.65%, and the qualified seed index was 91.38%. This paper can provide a theoretical and technical reference for improving the efficient and precise seeding of potatoes. |
url |
http://dx.doi.org/10.1155/2020/1504642 |
work_keys_str_mv |
AT zhangwanzhi optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters AT liuchenglong optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters AT luzhaoqin optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters AT qixieteng optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters AT luhaoyu optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters AT houjialin optimizeddesignandexperimentonnovelcombinationvacuumandspoonbeltmeteringdeviceforpotatoplanters |
_version_ |
1715378749833216000 |